
Command and Control Toolkit
Administrator’s Manual

2.0

TM

Command and Control ToolkitCommand and Control ToolkitCommand and Control ToolkitCommand and Control Toolkit
Administrator’s ManualAdministrator’s ManualAdministrator’s ManualAdministrator’s Manual

September 2002

TM

Copyright © 2001 Command and Control Technologies Corp.

ALL RIGHTS RESERVED. This document contains proprietary and confidential information of Command and Control
Technologies Corporation. No part of this publication may be disclosed to third parties, copied, or duplicated in any form
without the prior written permission of Command and Control Technologies Corporation.

Command and Control Toolkit, T-Zero and RangeNet are trademarks of Command and Control Technologies Corporation.
All other trademarks used in this document are the property of their respective owners.

Contributors

Written by Eric Sorton

Edited by Kevin Brown and Vicki Gardner

Production by Patti Schill and Amy Banta

Engineering contributions by Greg Hupf, Frank Noble, and John Ward

Corporate Headquarters

Command and Control Technologies Corp.
1425 Chaffee Drive, Suite 1
Titusville, FL 32780 USA
Tel: 321.264.1193
Fax: 321.383.5096
Web: http://www.cctcorp.com

Technical Support

Tel: 321.264.1193
Email: support@cctcorp.com
Web: http://www.cctcorp.com/support

LIMITED WARRANTY

SOFTWARE. Command and Control Technologies Corporation (CCT) warrants for a period of THIRTY (30) DAYS from the date of purchase that
the Command and Control Toolkit Version 2.0 (SOFTWARE) will execute its programming instructions as specified in the user documentation when
properly installed. Due to the complex nature of computer software, CCT does not warrant that the operation of the SOFTWARE will be
uninterrupted or error free.

MEDIA. CCT warrants the media upon which this SOFTWARE is recorded to be free of defects in materials and workmanship under normal use for
a period of THIRTY (30) DAYS from the date of purchase.

REMEDIES. In the event this SOFTWARE fails to execute its programming instructions, or if any media proves to be defective during the warranty
period, your remedy shall be to return the media to CCT for replacement. Should CCT be unable to replace the media within a reasonable time, your
alternative remedy shall be a refund of the purchase price upon return of the product and all copies.

WARRANTY VOID. This limited warranty is void if the failure results from abuse, misapplication, or user modification of the software other than
that provided for in the user documentation.

NOTICE OF WARRANTY CLAIMS. You must notify CCT in writing of any warranty claim prior to the expiration of the warranty period.

NO OTHER WARRANTIES. To the maximum extent permitted by applicable law, CCT disclaims all other warranties, either express or implied,
including but not limited to implied warranties of merchantability and fitness for a particular purpose, with respect to the SOFTWARE. This limited
warranty gives you specific legal rights. Some jurisdictions do not allow limitations on how long an implied warranty lasts, so the above limitations
or exclusion may not apply to you.

NO LIABILITY FOR CONSEQUENTIAL DAMAGES. To the maximum extent permitted by applicable law, in no event shall CCT be liable for
any lost revenues or profits, loss of data or other special, indirect, incidental or consequential damages, even if CCT has been advised of the
possibility of such damages. Because some jurisdictions do not allow the exclusion or limitations of liability for consequential or incidental damages,
the above limitation may not apply to you.

JURISDICTION. This license is governed by the Laws of the United States.

U.S. GOVERNMENT RESTRICTED RIGHTS. The SOFTWARE and the documentation are “commercial items” as that term is defined in 48
C.F.R. 2.101 consisting of “commercial computer software” and “commercial computer software documentation” as such terms are used in 48 C.F.R.
12.212. Consistent with 48 C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 222.7202-4, if the licensee hereunder is the U.S. Government or any
agency or department thereof, the SOFTWARE and the documentation are licensed hereunder (i) only as a commercial items, and (ii) with only those
rights as granted to all other end users pursuant to the terms and conditions hereof.

CCTK Administrator’s Manual

MNL-CCTK-Admin-120302.doc

August 24, 2001

http://www.cctcorp.com/
http://www.cctcorp.com/support

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 1

TABLE OF CONTENTS

1 INTRODUCTION ...5
1.1 MANUAL ORGANIZATION... 5
1.2 CCTK DOCUMENTATION GUIDE.. 6
1.3 REFERENCE DOCUMENTATION ... 7
1.4 CCT HELP DESK.. 7

2 USER ENVIRONMENT...8
2.1 AUTOMATED CONFIGURATION... 8
2.2 MANUAL CONFIGURATION... 9

3 PROJECT CONFIGURATION...11
3.1 PROJECT DIRECTORY.. 11
3.2 PROJECT CONFIGURATION FILE.. 12

3.2.1 Basic Structure ... 13
3.2.2 Specifying Startup Resources... 13
3.2.3 Specifying CctkClient Resources... 18
3.2.4 Standard Project Configuration File Template... 23

3.3 ARCHIVE CONFIGURATION FILE ... 23
3.4 CONFIGURATION DATABASE .. 24

3.4.1 Basic Structure ... 25
3.4.2 Defining Tables.. 26
3.4.3 Descriptors ... 28
3.4.4 Measurements .. 29
3.4.5 Defining Exceptions... 39
3.4.6 Defining Processing Modules .. 41
3.4.7 Defining Notices .. 46
3.4.8 Defining Link Records ... 48
3.4.9 Defining Packet Decommutation Records ... 50
3.4.10 Defining Interfaces... 51
3.4.11 Using Groups ... 60
3.4.12 Custom Database Components... 62
3.4.13 Standard System Notices.. 62
3.4.14 Example Configuration Database... 63

3.5 CONFIGURATION OF SYSTEM TASKS .. 63
3.5.1 Messaging .. 63
3.5.2 Archive... 64
3.5.3 Commanding.. 65
3.5.4 Health and Status.. 66
3.5.5 Data Processing.. 66
3.5.6 Time Control .. 69
3.5.7 Multicasting Data ... 70
3.5.8 Peer-to-Peer Interface... 71
3.5.9 External Interfaces ... 75

3.6 CREATING A CCTK PROJECT... 75

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 2

4 PROJECT EXECUTION ...78
4.1 STARTING AND STOPPING A PROJECT ...78

4.1.1 Using ProjectManager to Start a Project .. 78
4.1.2 Using ProjectManager to Stop a Project .. 81
4.1.3 Cleaning Up Project Resources.. 82

4.2 STARTING AND STOPPING APPLICATIONS ...83
4.3 CONNECTING TO THE SERVER FROM A CLIENT...83
4.4 PROJECT DIRECTORY ..84

4.4.1 Log Directory... 84
4.4.2 Temporary Directory.. 85
4.4.3 Lists Directory.. 85
4.4.4 PROC/KSHM/KMSG Directories ... 85
4.4.5 System State File.. 86

4.5 HEALTH AND STATUS ...87
4.6 UTILITY APPLICATIONS ..87

4.6.1 Channel Monitoring ... 87
4.6.2 Process Status Monitoring.. 89
4.6.3 Archive Monitoring.. 90
4.6.4 Command Line Retrievals.. 91
4.6.5 Batch Retrievals ... 92
4.6.6 Grace Scripts .. 92
4.6.7 CCTKsh ... 92

5 POST PROJECT EXECUTION..95
5.1 POST PROJECT ADMINISTRATION..95
5.2 HISTORIC RETRIEVALS ...95

6 SIMULATION ...97
6.1 RUNNING THE DEBUG SIMULATOR ...97
6.2 RUNNING THE GLG SIMULATOR..98
6.3 CCTK SIMULATION..99
6.4 SIMULATION ENGINE AND TCL ...100
6.5 SIMULATION LANGUAGE ..100

6.5.1 Key Simulation Modules.. 100
6.5.2 Update Cycle.. 101
6.5.3 Core Simulator Commands .. 101
6.5.4 Core Simulator Modules .. 105

6.6 SIMULATION EXAMPLES ...112

7 RETRIEVAL PARAMETER FILE ..113
7.1 FILE SYNTAX ..113
7.2 COMMAND DESCRIPTIONS ..113
7.3 EXAMPLE..115

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 3

8 PROCESS MANUAL PAGES ...116

GLOSSARY ...169

INDEX ..176

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 5

1 INTRODUCTION

The Command and Control Toolkit™ product is a data acquisition and commanding software
package that can be tailored to a wide range of command and control applications. The
product, also known as CCTK, provides a customizable client/server environment designed to
meet the performance requirements of mission critical command and control operations. The
CCTK client/server environment can be easily expanded from a single display console to any
number of networked display consoles.

The CCTK documentation set provides a comprehensive description of how to install,
configure, and use the CCTK software. This documentation, together with the reference
documents listed in each manual, contains the information you will need to apply CCTK and
any optional modules you have purchased to your command and control operation.

1.1 Manual Organization
This document describes configuration and administrative tasks associated with the Command
and Control Toolkit™ (CCTK). It is intended to guide users familiar with the operation of
CCTK through the steps necessary to configure the system. This manual contains important
information for project administrators as well as power users of CCTK. The manual is written
for users with a basic knowledge of the UNIX command line interface and a basic knowledge
of XML. The concepts and terminology discussed in this document are defined in the CCTK
User’s Manual.
The first section after the introduction presents the user environment. Before configuring or
executing CCTK, it is necessary to have a correctly configured environment. Section 2 shows
how to configure the environment to execute CCTK.

Section 3 shows how to configure a CCTK project. This section covers the project
configuration file, archive configuration, the configuration database, as well as several other
minor topics. Reference this section when you need information about any of the
configuration files associated with CCTK.

The next section discusses project execution. Methods for starting and stopping a project are
introduced. The ability to start and stop applications is discussed as well as communicating
with the project from a CCTK client. The artifacts created during project execution are
introduced and explained. Finally, a set of utilities is presented that are useful during project
operation.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 6

Section 5 discusses operations that occur after a project has been shutdown. This includes
historical retrievals and archive management.

The next section explains simulation in CCTK. The different ways in which to simulate data
are presented. The CCTK Tcl simulator is introduced and several simple examples are
explained.

The last two sections are reference sections. Manual pages, file specifications, and language
definitions are all present in this section.

A glossary of commonly used terms, phrases, and acronyms is included at the end of the
manual.

1.2 CCTK Documentation Guide
This manual is one of a set of five manuals included in the CCTK product suite, illustrated in
Figure 1-1 below. The manuals are designed to address the needs of particular classes of
CCTK users such as installers, administrators, and operators.

Installation
Manual

Administrator's
Manual

User's
Manual

PCM Telemetry

Interface
Manuals

Developer's
Manual

CCTK Documentation
Tree

Figure 1-1. CCTK Documentation Tree. Dashed boxes indicate
manuals for optional CCTK software products.

Release notes provide supplemental information to this manual. Please refer to the
RELEASE_NOTES text file in the root directory of the CCTK CD.

! CCTK Installation Manual – Describes the steps needed to install CCTK client and
CCTK server software from the CCTK CD. Installation on Microsoft Windows® and
UNIX® systems is described.

! CCTK Administrator’s Manual – Describes setup, configuration, and administration of
CCTK. The material addresses software setup, user administration, project configuration,
hardware configuration, and other topics related to administration of a CCTK-based
system.

! CCTK User’s Manual – Includes an overview of the CCTK architecture and a complete
description of how to use CCTK for operations.

! CCTK PCM Telemetry Interface Reference Manual – Describes setup, configuration,
and use of the optional PCM Telemetry Interface software module.

! CCTK Developer’s Manual – Describes the optional CCTK application development
environment and how to use the CCTK Developer’s kit to extend and customize CCTK
to a particular application or operation with your own software.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 7

1.3 Reference Documentation
The following documents complement the material presented in this manual:

! UNIX System Administration Reference

! C Shell Reference

! Bourne Shell Reference

! XML Unleashed – From Knowledge to Mastery, Sams Publishing, Indianapolis, IN,
2000.

! Tcl/Tk is a freely available, platform independent, language environment developed by
John Ousterhout. Additional information is available at http://www.neosoft.com/tcl.

1.4 CCT Help Desk
The CCT Help Desk Phone Number is (321) 264-1193 (available 8:00 am to 5:00 pm, U.S.
Eastern Time, Monday through Friday, excluding holidays).

CCT provides free unlimited telephone and e-mail support for 30 days after purchase as part
of our standard warranty. Customers who purchase the technical support upgrade option have
unlimited telephone or email support for one year after purchase or renewal. For questions or
comments about CCTK or other CCT products or services please call (321) 264-1193 and ask
to speak to a customer representative. For e-mail information, contact info@cctcorp.com or
visit our website at http://www.cctcorp.com.

It is important when calling for help with a problem to preserve the project environment as
much as possible to allow CCT engineers to efficiently diagnose the problem. If at all
possible, leave the project and operation in its current state at the time of the problem and call
the Help Desk. If it is not possible to stop and troubleshoot during an operation, please
perform the following steps:

1. Completely document all of the symptoms of the problem and as much of the state and
configuration of the project as possible.

2. Copy the KPATH directory to a location outside of the project environment (e.g.,
/tmp/projectname/date/).

3. Note the time and date of the problem.

Additional help may be found at the CCT Technical Support web site
http://www.cctcorp.com/support. Also, please review the RELEASE_NOTES file in the root
directory of the CCTK CD for additional information and instructions.

http://www.neosoft.com/tcl
mailto:info@cctcorp.com

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 8

2 USER ENVIRONMENT

This section discusses the configuration of the user environment on the CCTK server. Many
of the graphical user interfaces used by CCTK users execute on the CCTK server which is a
UNIX system and are displayed on the user’s client system using features of the X Window
System. Therefore, most users of CCTK must have a correctly configured user account on the
CCTK server. If a user only wishes to use the remote user applications (such as StripChart or
T-Zero™) then no account is needed on the server.

This section does not discuss user administration for UNIX systems, please reference the
appropriate operating system documentation for information on creating and administrating
users on the UNIX system. It also does not discuss configuration of the user environment on
the CCTK display client. CCTK requires no special configuration of the user environment on
the display client. It is up to the administrator of the display clients to create a setup
applicable to the local user’s needs.

Configuration of the user’s environment is accomplished through a series of environment
variables. The environment variables must be set correctly or CCTK will not operate properly.
CCTK requires additions to most of the standard UNIX environment variables (i.e. PATH,
LD_LIBRARY_PATH, etc.). The user’s shell is typically responsible for setting environment
variables on a UNIX system. For instructions on setting environment variables, see the
documentation associated with the user’s shell.

2.1 Automated Configuration
During installation, the install script creates two shell scripts that contain all of the necessary
environment variables to run CCTK: cct_env.sh is for users who prefer to use a Bourne-type
shell, and cct_env.csh is for users who prefer to use a C type shell. Both of these scripts are
located in CCTK installation directory (“CCT_HOME”) under etc. CCT recommends placing
the environment variable configuration within the startup scripts associated with the user’s
shell. If this is done, the CCTK environment will be established when a user logs into the
CCTK server. Table 2-1 summarizes the shell type, script location, and source command
reference for the user configuration scripts.

Table 2-1: User environment configuration scripts

Shell Type Script Location Command Reference
Bourne ${CCT_HOME}/etc/cct_env.sh . ${CCT_HOME}/etc/cct_env.sh

C ${CCT_HOME}/etc/cct_env.csh source ${CCT_HOME}/etc/cct_env.csh

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 9

2.2 Manual Configuration
The shell scripts described in the previous section should correctly configure the user
environment a majority of the time. Under certain custom configurations, it may be necessary
to manually set all of the environment variables needed by CCTK. When the user is extending
CCTK using the development option, there is a good chance that the standard configuration
scripts will be inadequate. The CCTK Developer’s Manual provides additional information on
configuration of the user environment to support development. Table 2-2 lists the
environment variables associated with CCTK.

Table 2-2: Required user environment variable listing

Environment Variable Name Value
CCT_HOME Set to CCT installation directory
GLG_HOME1 Set to GLG installation directory
GLG_PALETTES_LOCATION1 Set to ${GLG_HOME}/widgets

PATH2 Append ${CCT_HOME}/bin
Append ${GLG_HOME}/bin

LD_LIBRARY_PATH3,4 Append ${CCT_HOME}/lib
TCLLIBPATH Append ${CCT_HOME}/lib
DTDPATH Set to ${CCT_HOME}/include/dtd
CCTKPROJECTLABEL (undefined by default)
KPATH (undefined by default)

Most of the environment variables listed above are “standard” UNIX environment variables
and are explained in the appropriate UNIX documentation. The several that are specific to
CCTK are discussed in the following paragraphs.

CCT_HOME and GLG_HOME are simply used to locate the installed components in the
directory tree. GLG_PALETTES_LOCATION is a special GLG environment variable. Please
reference the GLG documentation for more information on it. DTDPATH is a special CCTK
environment variable that allows CCTK to locate the DTD’s used by the system.

CCTKPROJECTLABEL is an environment variable. It is not set by default. When set,
CctkClient will use the text of this variable as a replacement for the term “Project label” in its
display. CCTKPROJECTLABEL allows the project administrator to customize the wording of
the display for a particular domain. For example, “Mission” may be appropriate in the launch
processing domain, while “Experiment” may be more appropriate when conducting basic life
science research.

KPATH is a special environment variable that points to the project directory of the project the
user would like to use. KPATH is used by every CCTK process to locate the project directory

1 Only required when using the GLG Toolkit.
2 When using IRIX, it is important that /usr/freeware/bin is added to the path.
3 Under IRIX, LD_LIBRARY_PATH should be changed to LD_LIBRARYN32_PATH.
4 When using IRIX, it is important that /usr/freeware/lib is added to the library path.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 10

and thus, resources associated with a particular project. KPATH typically needs to be set if the
user is going to be performing operations from the UNIX command line. Command line
operations are typically required during project administration and application development.
If a user uses the CctkClient application, KPATH is set automatically when the user selects
“Open Project.” It is not necessary to set KPATH for users who use CctkClient. However, if
KPATH is set when CctkClient initializes, it will open that project by default.

The following listing shows an example environment configured for an IRIX system with
CCTK installed in the /opt/cct directory and GLG installed in the /opt/glg directory. This
listing is based upon the environment variables setup by the automatic configuration scripts
found in the ${CCT_HOME}/etc directory.

Listing 2-1: Sample user environment using automatic configuration scripts (IRIX)

CCT_HOME=/opt/cct

GLG_HOME=/opt/glg

GLG_PALETTES_LOCATION=/opt/glg/widgets

PATH=/usr/freeware/bin:/usr/local/bin:/opt/cct/bin:/opt/glg/bin:/usr/sbin:/usr/bsd:/sbin

:/usr/bin:/usr/bin/X11:/usr/etc

LD_LIBRARYN32_PATH=/usr/freeware/lib:/usr/local/lib:/opt/cct/lib

TCLLIBPATH=/usr/local/lib /opt/cct/lib /usr/freeware/lib

DTDPATH=/opt/cct/include/dtd

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 11

3 PROJECT CONFIGURATION

The project administrator can customize CCTK to meet the needs of a particular application.
This customization takes place in a series of configuration files located in the project
directory. Most of these configuration files are XML. A basic understanding of XML is
helpful in comprehending the CCTK project configuration files. It is possible (and likely) for
multiple projects to exist on a CCTK server. It is even possible for a single CCTK server to
execute multiple projects concurrently.

A consistent naming convention is used for the elements and attributes in the CCTK XML
configuration files. The name of an XML element always begins with a capital letter and has
each letter of each individual word capitalized. For example, the following items are all
elements in the CCTK configuration files.
! ProjectConfiguration
! NoticeDescriptor
! AnalogMeasurement

The name of an XML attribute always begins with a lower case letter and has each letter of
each individual word capitalized after the first. For example, the following items are all
attributes in the CCTK configuration files.

! waitFor
! minimumSize
! minimumSids

3.1 Project Directory
All information associated with a CCTK project is stored in a single directory. This project
directory, known as KPATH, contains both project configuration files and files dynamically
generated during project execution. Configuration files are explained in this chapter. Files
generated during project execution are explained in Section 4. The project directory should
reside on a local file system rather than a network file system. Archive bandwidth limitations
and file-locking problems may exist if a remote file system is used.

For proper operation of CCTK applications, it is advisable to set the environment variable
KPATH to point to the project directory containing the project that is being used. The

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 12

environment variable KPATH directs CCTK processes to the correct directory for obtaining
important project resources. If KPATH is not set, then a command line argument can be used
to pass the project directory location to CCTK processes. KPATH is automatically set by
CctkClient whenever a user performs an “Open Project” operation. Therefore, it is not
necessary to set KPATH for users interacting with CctkClient.
It is also important to correctly set the permissions on the project directory. If a user of the
system has read permissions to the project directory then they will be able to attach to the
project, view data, and issue commands. If they have write permissions to the project
directory, they will be able to change the project configuration. If you do not wish for all users
of the system to have access to the project, then be sure to restrict access to the directory using
the standard UNIX permission utilities. Additional UNIX permissions can be set on the
individual files within the project configuration directory to further restrict operations. These
permissions will be covered in subsequent sections.

The following configuration files reside in the project directory:

! Project Configuration File

! Database Configuration File(s)

! Archive Configuration File

The following sections further explain these configuration files.

3.2 Project Configuration File
CCTK configuration is defined in the project configuration file. The project configuration file
allows the user to customize the following aspects of CCTK :

! Project Name and Description

! Startup Configuration

! CctkClient Configuration

Like many of the CCTK configuration files, the project configuration file is based upon XML.
The DTD describing the project configuration file can be found in
${CCT_HOME}/include/dtd/project_config.dtd.
It is important for the project administrator to ensure that the permissions on the project
configuration file are set correctly. Table 3-1 describes how each of the primary UNIX
permission bits is used in relation to the project configuration file.

Table 3-1: Project configuration file permissions matrix

Permission
Bit Purpose

read (r)
If a user has read permissions on the project configuration file, they may attach to the project. When a
user attaches to a project, they can view data within the project and execute commands associated
with the project.

write (w) If a user has write permissions on the project configuration file, they may change the project
configuration file.

execute (x) If a user has execute permissions on the project configuration file, they may start/stop the project.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 13

3.2.1 Basic Structure

Listing 3-1 shows the basic structure of the project configuration file.

Listing 3-1: Basic XML structure of project configuration file

<?xml version="1.0"?>

<!DOCTYPE ProjectConfiguration SYSTEM "project_config.dtd">

<ProjectConfiguration project_name=”Project Name”>

<Description>A description of the overall project.</Description>

<StartUp defaultMode="Default Mode">

[… Elements Removed …]

</StartUp>

<CctkClient>

[… Elements Removed …]

</CctkClient>

</ProjectConfiguration>

As with all XML files, the version is contained on the first line. Immediately following the
version is the document type. Project name, which appears on the CctkClient user interface is
defined via the attribute project_name of the document element. An optional project
description, which also appears within CctkClient, is defined via the Description element.
Next, each project configuration file must have a StartUp element defining the resources
needed to startup the project. Finally, an optional CctkClient element defines the
configuration of the CctkClient user interface.

3.2.2 Specifying Startup Resources

The StartUp element is used to define the resources associated with the CCTK project. These
resources include:

! Modes

! Status Table

! Configuration Database Reference

! Channels

! Processes

Each of these resources is further discussed in the following sections.

3.2.2.1 Defining Modes
Each CCTK project consists of one or more modes configured by the project administrator.
The Mode element is used to define these modes. Modes are used to configure the required
resources during project execution. The user is able to select a mode when starting a project.
Each mode is given a unique name (via the name attribute) and contains a set of resources to
create when a project is started (via the elements). Each mode may also inherit another mode

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 14

(via the inherits attribute). When a mode inherits another mode, the project is started with all
of the resources associated with both modes. Listing 3-2 shows a project configuration file
with three modes configured.

Listing 3-2: Defining modes within the project configuration file

<?xml version="1.0"?>

<!DOCTYPE ProjectConfiguration SYSTEM "project_config.dtd">

<ProjectConfiguration project_name=”Project Name”>

<Description>A description of the overall project.</Description>

<StartUp defaultMode="Mode C">

<Mode name=”Mode A”>

[… Elements Removed …]

</Mode>

<Mode name=”Mode B” inherits=”Mode A”>

[… Elements Removed …]

</Mode>

<Mode name=”Mode C” inherits=”Mode B”>

[… Elements Removed …]

</Mode>

</StartUp>

[… Element Removed …]

</ProjectConfiguration>

In the above example, if the user starts the project in mode A, then only the resources
associated with mode A will be created. If the user starts the project in mode C, then the
resources associated with mode C, mode B, and mode A will be created. There is no limit to
the number of modes associated with each project.

3.2.2.2 Creating the Status Table
Each active CCTK process has an entry in the CCTK status table. The status table is created
at startup and preallocates a maximum number of processes that may be associated with a
single project. The element StatusTable with the attribute entries is used to specify the
number of entries to associate with the status table. It is important to allocate enough status
table entries for all of the processes that may be active at any one time during project
execution. The following formula provides a basic algorithm for estimating the number of
status table entries needed:

entries = (simultaneous clients + CCTK system processes) * 1.1
The entries attribute is used to specify the number of status table entries associated with this
mode as shown in Listing 3-3.

Listing 3-3: Defining the status table within the project configuration file

<?xml version="1.0"?>

<!DOCTYPE ProjectConfiguration SYSTEM "project_config.dtd">

<ProjectConfiguration project_name=”Project Name”>

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 15

<Description>A description of the overall project.</Description>

<StartUp defaultMode="Mode C">

<Mode name=”Mode A”>

<StatusTable entries=”100” />

[… Elements Removed …]

</Mode>

</StartUp>

[… Element Removed …]

</ProjectConfiguration>

The StatusTable element may only be specified once for each mode. The total status entries
allocated for a project is the sum of the entries for all modes.

3.2.2.3 Configuration Database References
Each project mode can reference one or more configuration database files. Each configuration
database file is parsed in turn to create the configuration database for the project. The
ConfigDb element and the file attribute are used to specify configuration database files.
Details on defining the contents of the configuration database files are discussed in Section
3.4. If the path to the file is not absolute, then they are referenced from the project directory.

Listing 3-4: Defining configuration database file within the project configuration file

<?xml version="1.0"?>

<!DOCTYPE ProjectConfiguration SYSTEM "project_config.dtd">

<ProjectConfiguration project_name=”Project Name”>

<Description>A description of the overall project.</Description>

<StartUp defaultMode="Mode C">

<Mode name=”Mode A”>

<ConfigDb file=”project_db_1.xml” />

<ConfigDb file=”project_db_2.xml” />

[… Elements Removed …]

</Mode>

</StartUp>

[… Element Removed …]

</ProjectConfiguration>

3.2.2.4 Creating Channels
CCTK processes use channels as an inter-process communications mechanism within CCTK.
Each CCTK project must define a set of standard channels. In addition, the user may
optionally define additional channels for passing data around the system. Additional channels
are typically used to pass data between interface processes and core CCTK processes. The
attributes used to define a channel are shown in Table 3-2.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 16

Table 3-2: Channel element attributes

Attribute Description
name Name of the channel. This is typically an input argument to CCTK processes.

size
Size of the channel in bytes. This value should be at least 5000 bytes. It should be increased for
channels that carry a lot of traffic. The higher value allows for a larger buffer between processes
and helps eliminate context switching between applications, but increases latency.

count

count should only be used when specifying the special channel “NEXT_AVAIL_CHAN”. CCTK
processes can request an unnamed channel via the channel subsystem. When an unnamed
channel is requested by a process, one of the channels from the “NEXT_AVAIL_CHAN” list is
selected. This count indicates how many channels should be created for this dynamic pool.

The Channel element is used to define channels. The Channel element must appear within a
Mode element. Listing 3-5 shows the definition of the standard CCTK channels and ten
NEXT_AVAIL_CHAN.

Listing 3-5: Defining channels within the project configuration file

<?xml version="1.0"?>

<!DOCTYPE ProjectConfiguration SYSTEM "project_config.dtd">

<ProjectConfiguration project_name=”Project Name”>

<Description>A description of the overall project.</Description>

<StartUp defaultMode="Mode C">

<Mode name=”Mode A”>

<Channel name="STDMSG" size="40000" />

 <Channel name="STDRESP" size="40000" />

 <Channel name="STDDIST" size="40000" />

 <Channel name="STDSTATUS" size="40000" />

 <Channel name="STDARCH" size="40000" />

 <Channel name="NEXT_AVAIL_CHAN" size="5000" count="10" />

[… Elements Removed …]

</Mode>

</StartUp>

[… Element Removed …]

</ProjectConfiguration>

It is important to note that each CCTK project must define the standard channels listed above
(STDMSG, STDREP, STDDIST, STDSTATUS, and STDARCH). Another requirement is to
define a minimum number of NEXT_AVAIL_CHAN.

3.2.2.5 Executing Processes
The final item specified within the Mode element of the project configuration file is the
Execute element. The Execute element specifies the commands to execute to complete the
project startup. Typically, each CCTK project will execute at least 3-5 and possibly as many
as 30-50 different processes that will perform the actual work associated with the project.
Each process executed has a different job (such as message passing, data processing, user
interface, etc.) Each mode has a list of processes to execute. When the project is started,

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 17

Execute elements are executed in the order they appear in the project configuration file, with
the parent modes Execute elements being executed first.

Each Execute element has three possible attributes as described in Table 3-3.

Table 3-3: Execute element attributes

Attribute Description

waitFor

waitFor can take on the value of “running”, “exit”, or “period”. If waitFor is “running”, then the
next execute statement will not be executed until the status of the current statement is set
to “running”. If waitFor is “exit”, then the next execute statement will not be executed until
the current statement exits. If waitFor is “period”, then the next execute statement will
execute after a certain period of time passes. Use waitFor “period” with a period of “0” to
not wait at all. Please see the text at the end of this section for important information on the
waitFor “running” option.

period

This option has a different meaning depending on the value of waitFor. If waitFor is
“running” or “exit”, then period represents a timeout. This is the longest time that will elapse
until a failure condition is assumed. If waitFor is “period”, then period is the amount of time
to wait. Period is given in seconds and defaults to 20.

critical

Valid values are “YES” or “NO”. If an “execute” statement is marked as critical, project
startup will fail if the execute statement does not exit with a success value. In addition, the
process will be monitored and a system message will be generated if the process executed
stops updating its health count.

Listing 3-6 shows examples of several different execute elements.

Listing 3-6: Defining Execute elements within the project configuration file

<?xml version="1.0"?>

<!DOCTYPE ProjectConfiguration SYSTEM "project_config.dtd">

<ProjectConfiguration project_name=”Project Name”>

<Description>A description of the overall project.</Description>

<StartUp defaultMode="Mode C">

<Mode name=”Mode A”>

<Execute waitFor=”running” critical=”YES”>

DataProc –t mdt -i STDRESP</Execute>

 <Execute waitFor=”running” period=”10” critical=”YES”>

Message</Execute>

<Execute waitFor=”period” period=”5” critical=”NO”>

UserCommand1</Execute>

<Execute waitFor=”exit” period=”30” critical=”NO”>

UserCommand2</Execute>

 [… Elements Removed …]

</Mode>

</StartUp>

[… Element Removed …]

</ProjectConfiguration>

For more information on the available CCTK processes, their options, and instructions on
using them, reference Section 3.5. There are several processes that are required for CCTK

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 18

operation. Section 3.5 also covers those processes that are required versus those that are
optional.

The use of the waitFor “running” option requires that the application be designed to use the
CCTK process state reporting mechanisms. CCTK provides a set of API calls that allow a
process to report its current state to the system. The waitFor “running” option uses these API
calls to determine when a process transitions to the “running” state and thus, when it is safe to
continue with execution of the next statement. It is important that waitFor “running” is only
used with properly designed CCTK processes. All of the core CCTK processes are designed
to support the waitFor “running” option. User developed applications may support the waitFor
“running” option if they were designed with support in mind. All UNIX applications and third
party applications will not support the waitFor “running” option and therefore must use one of
the other options. If, when using the waitFor “running” option, the project initialization
always fails on the same processes with a timeout, try changing it to a different option.

3.2.3 Specifying CctkClient Resources

The project configuration file allows the project administrator to exercise global control over
the contents of the display tree list.

The basic structure of the project configuration file CctkClient element is shown in Listing
3-7.

Listing 3-7: Basic XML structure of CctkClient configuration in project configuration file

<?xml version="1.0"?>

<!DOCTYPE ProjectConfiguration SYSTEM "project_config.dtd">

<ProjectConfiguration project_name=”Project Name”>

<StartUp>

[… Elements Removed …]

</StartUp>

<CctkClient>

<DisplayTree>

 [… display tree elements go here …]

 </DisplayTree>

</CctkClient>

</ProjectConfiguration>

Table 3-4 lists the valid display tree elements and provides a brief description of each.

Table 3-4: Valid display tree elements

Type Element Name Description
Interface DisplayTreeInterfaces Shows the list of active interfaces associated with this project.

The list of interfaces is dynamically generated based upon the
database configuration for the project. The system must be “UP”
before the list is generated.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 19

Type Element Name Description
Execute DisplayTreeExec Allows the execution of an arbitrary command. This is primarily

used to support applications external to CctkClient. Examples
include MonCon, MeasMon, and other graphical display items.
This does NOT include display applications executed on the
display client such as T-Zero and StripChart.

State History DisplayTreeStateHistory Shows the state history associated with this project.
List DisplayTreeList A list of other display tree items, including other lists. Lists allow

the project administrator to group items within the display tree.

Each of the above is represented by an element in the display tree. Usage of these elements is
described in the following sections.

All display tree elements share a common set of sub-elements and attributes. Table 3-5 lists
these common attribute and elements.

Table 3-5: Common display tree attributes and elements

Name Type Description

name attribute name is the name of the item. The name will be displayed in the CctkClient
display and will be seen by the user.

ToolTip element

The contents of the ToolTip element will be displayed when the user requests
the tooltip for an item in the display tree. A tooltip is displayed when the user
leaves his/her mouse over a display tree item for more than a few seconds. The
tooltip element typically contains a brief, single line description of the item.

WhatsThis element

The contents of the WhatsThis element will be displayed when the user
requests the “What’s This” help for an item in the display tree. This occurs when
the user selects the “Help→What’s This” menu item and clicks on an item in the
display tree. The WhatsThis element typically contains a longer, multi-line
description of the item.

3.2.3.1 Creating an Interface List in the Display Tree
Listing 3-8 shows an example of adding an interface list to the CctkClient display tree. Note
that the ToolTip and WhatsThis elements are shown in this example.

Listing 3-8: Defining a DisplayTreeInterfaces element in the project configuration file

<?xml version="1.0"?>

<!DOCTYPE ProjectConfiguration SYSTEM "project_config.dtd">

<ProjectConfiguration project_name=”Project Name”>

<StartUp>

[… Elements Removed …]

</StartUp>

<CctkClient>

<DisplayTree>

 <DisplayTreeInterfaces name=”Interfaces”>

<ToolTip>Valid interfaces for the current project and

mode.</ToolTip>

<WhatsThis>This displays a dynamically generated list of

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 20

interfaces that are valid for the current project and mode. This list can change during

project execution as projects are started and stopped.</WhatsThis>

</DisplayTreeInterfaces>

[… other display tree elements …]

 </DisplayTree>

</CctkClient>

</ProjectConfiguration>

Whenever an interface is developed within CCTK, one of the components of interface
development is a control widget. The control widget displays important health and status
about the interface as well as provides control for issuing commands to the interface. When a
project starts, an internal mapping is created between the valid interfaces for the current
project and mode and their respective control widgets. The “interface list” display tree
element instructs the display tree to search this internal mapping and place all valid control
widgets into the display tree.

The interface list is dynamically generated when a project executes. Therefore, the list will
remain empty until a project is executed for the first time. Once a project initializes, the
internal database will be searched and any valid port with a control widget specified will be
placed into the interfaces display tree list automatically. When a project is stopped, this list is
not cleared. If a different project or mode within the same project is started which has
different interfaces defined, those will also be added to the interfaces display tree list. Only
those interfaces associated with the current project will be active however. This allows the
user to switch between two projects and maintain the interface displays. To clear the display
tree list, simply select Close from the CctkClient menu.

3.2.3.2 Launching External Applications from the Display Tree
Listing 3-9 shows an example of adding an external application to the CctkClient display tree.
Note that the ToolTip and WhatsThis elements are also shown.

Listing 3-9: Defining a DisplayTreeExec element in the project configuration file

<?xml version="1.0"?>

<!DOCTYPE ProjectConfiguration SYSTEM "project_config.dtd">

<ProjectConfiguration project_name=”Project Name”>

<StartUp>

[… Elements Removed …]

</StartUp>

<CctkClient>

<DisplayTree>

 <DisplayTreeExec name=”Weather” exec=”MonCon weather.glg”>

<ToolTip>Launch the Weather Display</ToolTip>

<WhatsThis>This will item will launch the Weather Display using

the CCTK MonCon application.</WhatsThis>

</DisplayTreeExec>

[… other display tree elements …]

 </DisplayTree>

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 21

</CctkClient>

</ProjectConfiguration>

The DisplayTreeExec element includes a required exec attribute. The exec attribute specifies
the command to run. The command is passed to Bourne shell for execution. Therefore, any
valid Bourne shell syntax is valid within the exec attribute.

3.2.3.3 Adding State History to the Display Tree
Listing 3-10 shows an example of adding a state history view to the CctkClient display tree.
Note that the ToolTip and WhatsThis elements are also shown.

Listing 3-10: Defining a DisplayTreeStateHistory element in the project configuration file

<?xml version="1.0"?>

<!DOCTYPE ProjectConfiguration SYSTEM "project_config.dtd">

<ProjectConfiguration project_name=”Project Name”>

<StartUp>

[… Elements Removed …]

</StartUp>

<CctkClient>

<DisplayTree>

 <DisplayTreeStateHistory name=”State History”>

<ToolTip>Show the state history widget.</ToolTip>

<WhatsThis>When selected, this list item will display the state

history widget. The state history widget shows the state transitions associated with the

current CCTK project.</WhatsThis>

</DisplayTreeStateHistory>

[… other display tree elements …]

 </DisplayTree>

</CctkClient>

</ProjectConfiguration>

Only one DisplayTreeStateHistory element should be added to the display tree list. For more
information on the purpose of the state history view and how to use it, please reference the
CCTK User’s Manual.

3.2.3.4 Creating Lists in the Display Tree
Since the display tree is a “tree” type structure, it is possible to add a new “branch” to the
display tree that is a container for other display tree elements. Each “branch” is simply called
a new display tree list. Listing 3-11 shows an example of adding a list to the CctkClient
display tree. In this example, a display tree list is used to group together a set of electrical
displays.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 22

Listing 3-11: Defining a DisplayTreeList element in the project configuration file

<?xml version="1.0"?>

<!DOCTYPE ProjectConfiguration SYSTEM "project_config.dtd">

<ProjectConfiguration project_name=”Project Name”>

<StartUp>

[… Elements Removed …]

</StartUp>

<CctkClient>

<DisplayTree>

 <DisplayTreeList name=”Electrical Displays”>

<DisplayTreeExec name=”Electrical Display 1”

exec=”MonCon elec_display_1.glg”/>

<DisplayTreeExec name=”Electrical Display 2”

exec=”MonCon elec_display_2.glg”/>

</DisplayTreeList>

[… other display tree elements …]

 </DisplayTree>

</CctkClient>

</ProjectConfiguration>

Lists can be inserted into other lists creating a hierarchy type structure. Listing 3-12 shows an
example of a nested list. This example is an extension of the above where there are multiple
electrical subsystems and each subsystem has its own nested list.

Listing 3-12: Defining a nested DisplayTreeList element in the project configuration file

<?xml version="1.0"?>

<!DOCTYPE ProjectConfiguration SYSTEM "project_config.dtd">

<ProjectConfiguration project_name=”Project Name”>

<StartUp>

[… Elements Removed …]

</StartUp>

<CctkClient>

<DisplayTree>

 <DisplayTreeList name=”Electrical Displays”>

<DisplayTreeList name=”Stage 1 Electrical Subsystem”>

<DisplayTreeExec name=”Electrical Display 1”

exec=”MonCon stage_1/elec_display_1.glg”/>

<DisplayTreeExec name=”Electrical Display 2”

exec=”MonCon stage_1/elec_display_2.glg”/>

[… other display tree elements …]

</DisplayTreeList>

<DisplayTreeList name=”Stage 2 Electrical Subsystem”>

<DisplayTreeExec name=”Electrical Display 1”

exec=”MonCon stage_2/elec_display_1.glg”/>

<DisplayTreeExec name=”Electrical Display 2”

exec=”MonCon stage_2/elec_display_2.glg”/>

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 23

[… other display tree elements …]

</DisplayTreeList>

[… other display tree elements …]

</DisplayTreeList>

[… other display tree elements …]

 </DisplayTree>

</CctkClient>

</ProjectConfiguration>

3.2.4 Standard Project Configuration File Template

A sample project configuration file can be found at:

${CCT_HOME}/examples/template_project_config.pcml
This sample can be used as a template when creating new project configurations. Some key
points to note regarding this sample file:

! Two modes are defined; “Core CCTK” and “Custom CCTK”.

! “Core CCTK” contains the minimum resources necessary to run CCTK.

! “Custom CCTK” contains comments on how to extend the configuration to perform
additional tasks.

! A simple display tree is defined. It contains the most common elements as well as some
comments for adding additional elements.

Additional examples of project configuration files can be found in the
${CCT_HOME}/projects directory. Within this directory are several example projects, all of
which have a project configuration file.

3.3 Archive Configuration File
The archive configuration file is used to override the default configuration of the CCTK
archive subsystem. The archive configuration file, typically located in the project directory, is
a simple ASCII text file. It contains a list of configuration parameters and the appropriate
value for each parameter. There is one entry per line. Each entry is formatted as follows:

 <parameter_name> <parameter_value>

The file can be edited to tune execution of the archive subsystem. Not all parameters need to
be specified in the archive configuration file. In the absence of a configuration file or any one
parameter, the default value for that parameter is used. In many cases, the larger the value for
a parameter, the more memory the archive subsystem will consume.

The archive configuration file must be passed on the command line to the TamArs process
(one of the primary processes of the archive subsystem). Although it is typically called
ars_config.d, the user can choose any name for the file. The TamArs process reads the archive
subsystem configuration file. If a configuration file name is specified on the TamArs
command line, it is read in during TamArs initialization. A configuration file must be
specified on the command line to override the default values.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 24

Table 3-6 presents the valid parameters for the archive configuration file along with a
description, the possible range of values, and the default value.

Table 3-6: Archive configuration parameters

Parameters Description Range Default Value
max_SIDs Max data ids (SIDs) to be archived. This should be the

sum of the measurements, commands, and notices
within the system that will be archived. Reducing the size
of this value allows the archive subsystem to use less
memory. Increasing the size of this value causes the
archive subsystem to use more memory.

1000..10000 5000

tam_size Size (bytes) of the temp archive (disk). If the temporary
archive exceeds this size, the archiving will stop.

500KB..8GB 1GB

data_compress Compression of archived data. Indicates if the internal
data compression algorithm is off or on. This significantly
reduces disk space at the cost of minimal processing.

ON | OFF ON

fd_refresh Refresh cyclic interval (minutes). At this indicated
interval, the archive subsystem will automatically write
the last known value of all measurements not received in
the previous interval out to disk.

1..10 10

tam_path Full path (directory) containing the path where the
archive subsystem will store the archive files.

n/a (project directory)

tam_auto_start Automatic activation of TAM recording startup. This
indicates whether the archive subsystem should be
activated on system startup or if it should wait to be
activated by a user.

ON | OFF ON

Listing 3-13 shows a sample archive configuration file.

Listing 3-13: Sample archive configuration file

max_SIDs 1000

tam_size 2048000000

tam_path /tmp/TAM

The first line sets the maximum number of system identifiers (SIDs) to be archived to 1000.
The second line sets the size of the archive files to 2GB. The third line moves the archive files
from their default location in the project directory to the tmp directory of the system. Note
that the archive size may be limited by the maximum file size of your operating system.

3.4 Configuration Database
The CCTK configuration database stores the table and descriptor configuration for a project.
Section 3.2.2.3 discusses how to reference configuration database files from within the Mode
elements of the project configuration file. Upon project startup, ProjectManager will parse
and load the tables and descriptors defined in all of the configuration database files associated
with a particular mode. It is possible, and usually desirable, to break the CCTK configuration
database into multiple files to facilitate:

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 25

! Organization: Related configuration information can be contained in separate files
making for better organization and easier maintenance.

! Selective Loading: With the database broken into multiple files, modes can be configured
to selectively load only the tables/descriptors necessary for a particular application.

! Easier Troubleshooting: Multiple files allow errors to be isolated to smaller blocks of
data and thus, it is simpler to find problems.

Since the format of the configuration database files is XML, a DTD is used to describe the file
syntax. The configuration database DTD file can be found at
${CCT_HOME}/include/dtd/xcdb_config.dtd. The following sections provide a detailed
description of the valid elements and attributes that can be used in defining a CCTK
configuration database.

3.4.1 Basic Structure

Listing 3-14 shows the basic structure of the configuration database file.

Listing 3-14: Basic XML structure of configuration database file

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase shlibs=”[… dynamic libraries …]”>

[… table and table group elements …]

[… descriptor and descriptor group elements …]

</ConfigurationDatabase>

As with all XML files, the version is contained on the first line. Immediately following the
version is the document type. ConfigurationDatabase is the recommended document type for
most CCTK configuration database files. Within the ConfigurationDatabase element, the user
defines any number of table, table group, descriptor, and descriptor group element types.
Section 3.4.11 provides information on custom databases in which the user may extend the
database to include additional custom descriptors. In these custom cases, the document type
will change.

There are several descriptors within the CCTK configuration database that can reference other
descriptors. For example, an analog measurement references both a conversion and an
exception. When a reference is necessary, it can be declared one of two ways:

! In-line: In this case, the referenced item is in-lined with the parent item. The in-lined item
is fully declared with the XML element of the parent.

! Reference: In this case, only the name of the referenced item is placed within the parent
item’s XML element. It is up to the user to declare an item of that type elsewhere within
the configuration database.

Examples of in-line and reference declarations are presented in several of the following
sections.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 26

3.4.2 Defining Tables

Each CCTK configuration database must define a set of real-time tables. Each real-time table
stores descriptors of related information. The real-time tables must be defined in the
configuration database before any descriptors that will be placed into them. It is permissible to
define a table, then all of the descriptors associated with that table, then define the next table,
then all of the descriptors associated with that table. Another technique is to first define all of
the tables and then define all of the descriptors.

The Table element accepts several attributes, the most common of which is name. The other
attributes control storage aspects of the table. Under normal circumstances, CCTK will
automatically size the tables and these attributes are not needed.

Table 3-7 lists all of the attributes associated with the Table element. The shared column
indicates if the element or attribute can be used when defining a TableGroup. Groupings are
an advanced concept and further defined in Section 3.4.11.

Table 3-7: Table elements and attributes

Name XML Type Data Type Shared Required Default Value

attribute string no yes –
name

Name of the table, must be unique within a CCTK project.

element string yes no (empty string)
Description

A description of the table.

attribute integer yes no (see below)
size If size is specified, the table will always be that size. The automated table sizing is not

performed and the minimumSize and percentSpareSize attributes are ignored.

attribute integer yes no 25,000 (see below)
minimumSize The table will never be sized smaller than this value when its size is calculated. If the

calculated size is less than minimumSize, it will be increased to minimum size.

attribute real yes no 10%
percentSpareSize After calculating the necessary size of the table, the size will be increased by this

percentage which will be used as spare space for run-time updates of the table.

attribute integer yes no (see below)

sids If sids is specified, the table will always be allocated to hold this number of SID’s. The
automated table sizing is not performed and the minimumSids and percentSpareSids are
ignored.

attribute integer yes no (see below)

minimumSids The table will be sized to hold at least minimumSids when the number of SID’s is
calculated. If the calculated SID’s is less than minimumSids, it will be increased to hold the
value specified.

attribute real yes no 10%
percentSpareSids After calculating the necessary number of SID’s for the table, the total will be increased by

this percentage which will be used as spares for run-time updates of the table.

Listing 3-15 provides an example of defining several tables.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 27

Listing 3-15: Configuration database table example

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<Table name=”Example Table 1” />

<Table name=”Example Table 2” />

<Table name=”Example Table 3” percentSpareSpace=”20” percentSpareSids=”20”>

<Description>Description of Table 3</Description>

</Table>

</ConfigurationDatabase>

It is important to note that if an element or attribute is not specified for a table, then the
system will use a default value. Most elements/attributes associated with tables (and the other
configuration database items) are optional. It is only necessary to use the attribute/element
when a value other than the default is desired.

CCTK requires a set of tables be defined with a particular name and in a particular order.
Table 3-8 lists the required table names and ordering.

Table 3-8: Required CCTK tables

Table Name Description
ndt Notice Descriptor Table: Contains information, including name and attributes, associated with the

notices defined for the running CCTK project.
mdt Measurement Descriptor Table: Contains information, including name and attributes, associated with

the measurements, exceptions, and conversions defined for the running CCTK project.
cdt Command Descriptor Table: Contains information, including name and attributes, associated with the

system commands defined for the running CCTK project.
ldt Link Descriptor Table: Contains information, including name and attributes, associated with external

commands and link records that link a measurement with an external interface.
pdt Port Descriptor Table: Contains information, including name and attributes, associated with a port of an

external interface.
bdt Bus Descriptor Table: Contains information, including name and attributes, associated with a bus of an

external interface.

It is possible to define additional tables for a project, but the above tables must be defined first
and in the given order. You may wish to define additional tables to hold custom configuration
information and/or descriptors related to system customization. Listing 3-16 shows an
example definition of the tables listed in Table 3-8.

Listing 3-16: CCTK table definition

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<Table name="ndt">

<Description>Notice Descriptor Table.</Description>

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 28

</Table>

<Table name="mdt">

 <Description>Measurement Descriptor Table.</Description>

</Table>

<Table name="cdt">

 <Description>Command Descriptor Table.</Description>

</Table>

<Table name="ldt">

 <Description>Link Descriptor Table.</Description>

</Table>

<Table name="pdt">

 <Description>Port Descriptor Table.</Description>

</Table>

<Table name="bdt">

 <Description>Bus Descriptor Table.</Description>

</Table>

</ConfigurationDatabase>

3.4.3 Descriptors

Descriptor is a general term referring to a single, named object within CCTK. Measurements,
commands, notices, and other objects are descriptors within CCTK. Most operations within
CCTK use a descriptor as the object of the operation. Each descriptor shares several important
characteristics:

! Each is contained within a table.

! Each has a unique name within a project.

! Each is given a unique, numbered system identifier (SID).

! Each has a description.

Table 3-9 lists the common elements/attributes applicable to all descriptors.

Table 3-9: Descriptor elements and attributes

Name XML Type Data Type Shared Required Default Value

attribute string no yes –
name

Name of the descriptor, must be unique in the CCTK project.

attribute string yes no (varies by type)

table
Table the descriptor will reside in. CCTK will default all descriptors to the correct table. This
attribute is not needed in most circumstances. It must correspond to the name of a
previously defined table. The default tables for the common CCTK descriptors are listed
below in Table 3-10.

element string yes no –
Description

A brief description of the descriptor.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 29

Table 3-10 lists the types of descriptors that can be defined in CCTK.

Table 3-10: CCTK descriptors

Element Name Default Table Section Description
AnalogMeasurement mdt 3.4.4.2 Contains the attributes and properties associated with

an analog measurement in CCTK.
AnalogException mdt 3.4.5 Contains the attributes and properties associated with

an analog exception in CCTK.
DiscreteMeasurement mdt 3.4.4.3 Contains the attributes and properties associated with

a discrete measurement in CCTK.
DiscreteException mdt 3.4.5 Contains the attributes and properties associated with

a discrete exception in CCTK.
SignedIntMeasurement mdt 3.4.4.4 Contains the attributes and properties associated with

a signed integer measurement in CCTK.
SignedIntException mdt 3.4.5 Contains the attributes and properties associated with

a signed integer exception in CCTK.
UnsignedIntMeasurement mdt 3.4.4.4 Contains the attributes and properties associated with

an unsigned integer measurement in CCTK.
UnsignedIntException mdt 3.4.5 Contains the attributes and properties associated with

an unsigned integer exception in CCTK.
ByteArrayMeasurement mdt 3.4.4.5 Contains the attributes and properties associated with

a byte array measurement in CCTK.
ByteArrayException mdt 3.4.5 Contains the attributes and properties associated with

a byte array exception in CCTK.
StringMeasurement mdt 3.4.4.6 Contains the attributes and properties associated with

a string measurement in CCTK.
StringException mdt 3.4.5 Contains the attributes and properties associated with

a string exception in CCTK.
NoticeDescriptor ndt 3.4.7 Contains the attributes and properties associated with

a notice in CCTK.
PacketDcomDescriptor ldt 3.4.9 Contains the attributes and properties associated with

a decommutation packet in CCTK.
IntegerConversion mdt 3.4.6.1 Contains the attributes and properties associated with

an integer conversion in CCTK.
PolynomialConversion mdt 3.4.6.2 Contains the attributes and properties associated with

a polynomial conversion in CCTK.
PiecewiseLinearConversion mdt 3.4.6.3 Contains the attributes and properties associated with

a piecewise linear conversion in CCTK.

Note that there is no generic “Descriptor” or “Measurement” descriptor element. A generic
descriptor (or measurement) is an abstract construct and cannot be specified in the CDB.
Examples of defining different descriptor types are shown in the following sections.

3.4.4 Measurements

Measurements are descriptors that store the current value of some item. This item can be a
physical item such as a temperature sensor, or a virtual item, such as a state of the processing
of some subsystem. There are four primary types of measurements in CCTK:

! Analog: Represents floating point numbers.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 30

! Signed/Unsigned Integer: Represents integer numbers.

! Discrete: Represents items that have two states (such as a switch).

! Byte Array/String: Represents character data as either a list of bytes or a null-terminated
string.

Measurements are a type of descriptor so all elements and attributes associated with a
descriptor are valid for a measurement. In addition, a measurement has several specific
attributes and elements.

Table 3-11 shows the valid elements and attributes for a measurement.

Table 3-11: Measurement elements and attributes

Name XML Type Data Type Shared Required Default Value

attribute integer yes no (varies)

rawDataSize rawDataSize of the measurement rounded to the nearest byte. Default value varies by
type. For byte arrays, this is the maximum permissible size of the byte array (i.e. storage
space).

attribute string yes no STDARCH

distributeToChannels Indicates the channels to distribute this measurement. Typically this will always be
STDARCH. If it is empty, then no distribution will take place and the measurement will not
be archived.

element n/a yes no (none)
ProcessingReference Defines a reference to a processing module for this measurement. This is exclusive with

any in-line processing reference.

element n/a yes no (none)
<any processing element> Defines a processing module to associate with this measurement in-line. This is exclusive

with ProcessingReference.

element n/a yes no –
StaleProcessing

Stale processing configuration for a measurement.

Processing reference allows a processing module to be associated with this measurement.
Processing modules are used to perform conversions between different data types. See Section
3.4.6 for details on specifying processing chains.

Stale processing is a type of measurement processing that applies to all measurements. Stale
processing verifies that a measurement is changing as samples are received. If stale
processing is enabled, each time a measurement is received, it will be compared to the
previous value. If the value has not changed, the stale count will increment. If the stale count
exceeds a user defined value, then an exception will be generated and the measurement will
be declared stale. Table 3-12 lists the attributes associated with the StaleProcessing element.

Table 3-12: StaleProcessing elements and attributes

Name XML Type Data Type Shared Required Default Value

attribute true or false yes no true
active

Indicates if stale processing is active for a particular measurement.

attribute integer yes yes (none)
count

The number of identical samples to receive before marking a measurement as stale.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 31

3.4.4.1 Common Measurement Properties
There are several elements that are common to certain types of measurements, but do not
apply globally to all measurements. Since these elements do not apply to all measurements,
they cannot appear as shared elements within a measurement. However, since they apply to
multiple measurement types, it is useful to look at them prior to examining the individual
measurement types. The common measurement elements include:

! Significant change

! Maximum change

! Range

The SignificantChange element controls the significant change processing associated with
either an analog or integer (signed and unsigned) measurement. When significant change is
enabled, a measurement will not be processed unless it has changed by a user-defined amount.
By enabling significant change, the total number of processed measurements decreases and
the processor load can be reduced. Table 3-13 shows the valid attributes for the
SignificantChange element.

Table 3-13: SignificantChange elements and attributes

Name XML Type Data Type Shared Required Default Value

attribute true or false yes no true
active

Indicates if significant change processing is active for a particular measurement.

attribute integer / real yes yes (none)

value The amount a value must change by before it is considered significant and thus processed
through the system. Value is an integer if describing an integer measurement; real if
describing an analog measurement.

The MaximumChange element controls the maximum change processing associated with
either an analog or integer (signed and unsigned) measurement. The maximum change
processing algorithm will generate an exception for a measurement when the value of the
measurement changes by more than the indicated amount. Some measurements should not
change quickly, this generic processing algorithm can be used to detect unwanted changes.
Table 3-14 shows the valid attributes for the MaximumChange element.

Table 3-14: MaximumChange elements and attributes

Name XML Type Data Type Shared Required Default Value

attribute true or false yes no true
active

Indicates if maximum change processing is active for a particular measurement.

attribute integer / real yes yes (none)

value The amount of change the measurement must exceed to force a maximum change
exception to be generated. Value is an integer if describing an integer measurement; real if
describing an analog measurement.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 32

The Range element controls the generic range checking associated with either an analog or
integer (signed and unsigned) measurement. The range processing algorithm will generate an
exception for a measurement when the value of the measurement is outside the given range.
This range checking is considered the maximum permissible range of the measurement based
upon the hardware. CCT recommends setting this range to the precision of the hardware. For
example, if the system is processing a 12-bit value, then this range would be set appropriately
to cover the entire 12-bit range. In this way, if this exception is generated, it usually indicates
a serious problem with the configuration of the system. For user defined ranges based upon
certain states of the system, CCT recommends using exceptions (see Section 3.4.5). Table
3-15 shows the valid attributes for the Range element.

Table 3-15: Range elements and attributes

Name XML Type Data Type Shared Required Default Value

attribute true or false yes no true
active

Indicates if range processing is active for a particular measurement.

attribute integer / real yes yes (none)
lower The lower bound for the range-checking algorithm. Value is an integer if describing an

integer measurement; real if describing an analog measurement.

attribute integer / real yes yes (none)
upper The upper bound for the range-checking algorithm. Value is an integer if describing an

integer measurement; real if describing an analog measurement.

3.4.4.2 Defining Analog Measurements
Analog measurements are a type of measurement used to store a floating point value. Analog
measurements have the native type of double, which, on most systems, is a 64 bit IEEE
floating point value. Conversion routines are used to convert the raw value received from the
external interface to the appropriate native type. The AnalogMeasurement element is used to
declare an analog measurement in the CCTK configuration database. Since analogs are a type
of measurement and thus a type of descriptor, all of the elements/attributes associated with
measurements and descriptors apply to analogs.

The elements and attributes unique to an analog measurement are listed in Table 3-16

Table 3-16: Analog measurement elements and attributes

Name XML Type Data Type Shared Required Default Value

element n/a yes no (none)
ExceptionReference

Defines a reference to an exception for a measurement. This is exclusive with AnalogException.

element n/a yes no (none)
AnalogException Defines an analog exception to associate with this measurement in-line. This is exclusive with

ExceptionReference.

element string yes no (none)
Units

The units associated with this measurement.

element n/a yes no (inactive)
SignificantChange

Defines the significant change properties associated with this measurement.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 33

Name XML Type Data Type Shared Required Default Value

element n/a yes no (inactive)
MaximumChange

Defines the maximum change properties associated with this measurement.

element n/a yes no (inactive)
Range

Defines the range properties associated with this measurement.

element real yes no 0.0
InitialValue

Defines the initial value associated with this measurement.

Listing 3-17 provides an example of defining an analog measurement.

Listing 3-17: Configuration database example, defining analog measurements

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<AnalogMeasurement name=”Sample Analog 1” />

<AnalogMeasurement name="Sample Analog 2" active="true" rawDataSize="8">

<Description>Description for Sample Analog 2</Description>

<PolynomialConversion name="Polynomial" table="mdt">

<PolynomialCoefficient coefficient="0" value="5" />

<PolynomialCoefficient coefficient="1" value="10" />

</PolynomialConversion>

<StaleProcessing active="true" count="10" />

<ExceptionReference name="Analog Exception" />

<Units>meters</Units>

<SignificantChange active="true" method="processed" value="1.0" />

<MaximumChange active="true" method="processed" value="10.0" />

<Range active="true" method="processed" lower="0.0" upper="100.0" />

<InitialValue>1.234</InitialValue>

</AnalogMeasurement>

</ConfigurationDatabase>

“Sample Analog 1” shows the simplest analog measurement definition. All properties take on
their default values. “Sample Analog 2” shows an analog measurement with most of the valid
attributes/elements defined including those inherited from descriptor and measurement.
Elements/attributes not explained previously are defined below.

! ExceptionReference: Exceptions can be defined in-line or as a reference. In this case, the
exception is defined as a reference. See Section 3.4.5 for more information on
exceptions.

! PolynomialConversion: Conversions can be defined in-line or as a reference. In this case,
a polynomial conversion is defined in-line. The polynomial conversion is actually

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 34

considered a processing module in CCTK. See Section 3.4.6 for more information on
processing modules and processing chains.

! Units: The units associated with the measurement, this is an informational field only.

! InitialValue: The initial value of measurement can be set with this tag.

3.4.4.3 Defining Discrete Measurements
Discrete measurements can only have one of two values, a high state and a low state. CCTK
allows you to define the names of these states and the values they represent. The
DiscreteMeasurement element is used to declare a discrete measurement in the CCTK
configuration database.

Since discrete measurements are a type of measurement and thus a type of descriptor, all of
the elements/attributes associated with measurements and descriptors apply to discretes. Table
3-17 lists the elements and attributes associated with a discrete measurement.

Table 3-17: Discrete measurement elements and attributes

Name XML Type Data Type Shared Required Default Value

element n/a yes no (none)
ExceptionReference Defines a reference to an exception for this measurement. This is exclusive with

DiscreteException.

element n/a yes no (none)
DiscreteException Defines a discrete exception to associate with this measurement in-line. This is exclusive

with ExceptionReference.

element n/a yes no low, 0
DiscreteLowState

Defines the low state text and code values for this discrete measurement.

element n/a yes no high, 1
DiscreteHighState

Defines the high state text and code values for this discrete measurement.

element string yes no 0
InitialValue Defines the initial value associated with this measurement. This is specified as either the

low or high state text.

DiscreteLowState and DiscreteHighState share a set of common attributes. These attributes
are described in Table 3-18.

Table 3-18: DiscreteLowState and DiscreteHighState attributes

Name XML Type Data Type Shared Required Default Value

element integer yes no 0 for low, 1 for high
code

Defines the state code to associate with the low or high state of the discrete measurement.

element string yes no low for low, high for high
text

Defines the state text to associate with the low or high state of the discrete measurement.

Listing 3-18 provides an example of defining a discrete measurement.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 35

Listing 3-18: Configuration database example, defining discrete measurements

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<DiscreteMeasurement name=”Sample Discrete 1” />

<DiscreteMeasurement name="Sample Discrete 2" active="true" rawDataSize="1">

<Description>Description for Sample Discrete 2</Description>

<StaleProcessing active="true" count="10" />

<DiscreteException name="Inline Discrete Exception">

<Exception characteristic="1" notice="Test Notice">x == 0</Exception>

</DiscreteException>

<DiscreteLowState code="0" text="low" />

<DiscreteHighState code="1" text="high" />

<InitialValue>high</InitialValue>

</DiscreteMeasurement>

</ConfigurationDatabase>

“Sample Discrete 1” shows the simplest discrete measurement definition. All properties take
on their default values. “Sample Discrete 2” shows a discrete measurement with most of the
valid attributes/elements explicitly defined including those inherited from descriptor and
measurement. Elements/attributes not explained previously are defined below.

! DiscreteException: Exceptions can be defined in-line or as a reference. In this case, the
exception is defined in-line. See Section 3.4.5 for more information on exceptions.

! DiscreteLowState: Defines the low state code and value for the discrete measurement.

! DiscreteHighState: Defines the high state code and value for the discrete measurement.

! InitialValue: The initial value of measurement can be set with this tag.

3.4.4.4 Defining Signed/Unsigned Integer Measurements
Signed/unsigned measurements are a type of measurement used to store an integer value.
Signed/unsigned measurements have the native type of int, which, on most systems, is a 32 bit
IEEE integer value. The signed version is sign extended while the unsigned version is not.
The UnsignedIntMeasurement element is used to declare an unsigned integer measurement in
the CCTK configuration database. The SignedIntMeasurement element is used to declare a
signed integer measurement in the CCTK configuration database.

Since signed/unsigned integers are a type of measurement and thus a type of descriptor, all of
the elements/attributes associated with measurements and descriptors apply to integers. Table
3-19 lists the elements and attributes associated with signed/unsigned measurements.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 36

Table 3-19: Signed/unsigned measurement elements and attributes

Name XML Type Data Type Shared Required Default Value

element n/a yes no (none)
ExceptionReference Defines a reference to an exception for this measurement. This is exclusive with

SignedIntException (or UnsignedIntException).

element n/a yes no (none)

SignedIntException Defines a signed integer exception to associate with this measurement in-line. This is
exclusive with ExceptionReference. This element only applies to signed integer
measurements.

element n/a yes no (none)

UnsignedIntException Defines an unsigned integer exception to associate with this measurement in-line. This is
exclusive with ExceptionReference. This element only applies to unsigned integer
measurements.

element string yes no (none)
Units

The units associated with this measurement.

element n/a yes no (inactive)
SignificantChange

Defines the significant change properties associated with this measurement.

element n/a yes no (inactive)
MaximumChange

Defines the maximum change properties associated with this measurement.

element n/a yes no (inactive)
Range

Defines the range properties associated with this measurement.

element integer yes no 0
InitialValue

Defines the initial value associated with this measurement.

Listing 3-19 provides an example of the basic syntax of a signed/unsigned integers.
Listing 3-19: Configuration database example, defining signed and unsigned measurements

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<UnsignedIntMeasurement name=”Sample Int 1” />

<SignedIntMeasurement name="Sample Int 2" active="true" rawDataSize="4">

<Description>Description for Sample Int 2</Description>

<StaleProcessing active="true" count="10" />

<SignedIntException name="Inline SignedInt Exception" table="mdt">

<Exception characteristic="1">x < 0 || x >= 100</Exception>

</SignedIntException>

<Units>meters</Units>

<SignificantChange active="true" method="processed" value="1" />

<MaximumChange active="true" method="processed" value="10" />

<Range active="true" method="processed" lower="0" upper="100" />

<InitialValue>1</InitialValue>

 </SignedIntMeasurement>

</ConfigurationDatabase>

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 37

“Sample Int 1” shows the simplest unsigned integer measurement definition. All properties
take on their default values. “Sample Int 2” shows a signed integer measurement with most of
the valid attributes/elements defined including those inherited from descriptor and
measurement. Elements/attributes not explained previously are defined below.

! ExceptionReference: Exceptions can be defined in-line or as a reference. In this case, the
exception is defined in-line. See Section 3.4.5 for more information on exceptions.

! Units: The units associated with the measurement, this is reference only field.

! InitialValue: The initial value of measurement can be set with this tag.

3.4.4.5 Defining Byte Array Measurements
Byte array measurements store an array of bytes. CCTK allows you to independently specify
the maximum storage space allocated for each byte array measurement. The
ByteArrayMeasurement element is used to declare a byte array measurement in the CCTK
configuration database.

Since byte arrays are a type of measurement and thus a type of descriptor, all of the
elements/attributes associated with measurements and descriptors apply to byte arrays.

Table 3-20 lists the elements and attributes associated with a byte array measurement.

Table 3-20: Byte array measurement elements and attributes

Name XML Type Data Type Shared Required Default Value

element n/a yes no (none)
ExceptionReference Defines a reference to an exception for this measurement. This is exclusive with

ByteArrayException.

element n/a yes no (none)
ByteArrayException Defines a byte array exception to associate with this measurement in-line. This is exclusive

with ExceptionReference.

element (see below) yes no (see below)
InitialValue Defines the initial value associated with this measurement. The initial value is inputted as a

series of bytes, space delimited. Standard C integer conversion rules will be followed.

Listing 3-20 provides an example of the basic syntax of the ByteArrayMeasurement.

Listing 3-20: Configuration database example, defining byte array measurements

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<ByteArrayMeasurement name=”Sample BA 1” />

<ByteArrayMeasurement name="Sample BA 2" active="true" table="mdt">

<Description>Description for Sample BA 2</Description>

<StaleProcessing active="true" count="10" />

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 38

<ExceptionReference name=”Byte Array Exception” />

<InitialValue>12 23 34 45 56</InitialValue>

</ByteArrayMeasurement>

</ConfigurationDatabase>

“Sample BA 1” in Listing 3-20 shows the simplest byte array measurement definition. All
properties take on their default values. “Sample BA 2” shows a byte array measurement with
most of the valid attributes/elements defined including those inherited from descriptor and
measurement. Elements/attributes not explained previously are defined below.

! ExceptionReference: Exceptions can be defined in-line or as a reference. In this case, the
exception is defined as a reference. To define an exception in-line, use the
ByteArrayException element. See Section 3.4.5 for more information on exceptions.

! InitialValue: The initial value of the byte array measurement can be set with this tag. The
initial value of a byte array is a list of integer numbers between 0-255 (decimal)
separated by a space. Each number will be read in turn and placed into the byte array.
Standard C conversion rules are followed when processing the numbers. Values that start
with 0 are treated as octal, those starting with 0x are treated as hexadecimal.

Byte arrays use the raw data size field slightly differently than the other measurements. With
byte arrays, the raw data size field is the maximum storage space allocated for the byte array.
When defining a byte array, raw data size should be set to the maximum length of the data
that will be stored in this measurement. It is permissible to store less, but never more.

3.4.4.6 Defining String Measurements
String measurements are a subtype of byte array measurements. The previous discussion on
byte array measurements applies, except that the element name changes from
ByteArrayMeasurement to StringMeasurement. The key difference lies in the processing of
the initial value. For strings, the initial value is considered to be a string and the ASCII values
representing the string are inserted into the byte array. Listing 3-21 shows an example of
defining a string measurement.

Listing 3-21: Configuration database example, defining string measurements

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<StringMeasurement name=”Sample String 1” />

<StringMeasurement name="Sample String 2" active="true" table="mdt">

<Description>Description for Sample String 2</Description>

<StaleProcessing active="true" count="10" />

<ExceptionReference name=”String Exception” />

<InitialValue>This is a string!</InitialValue>

</StringMeasurement>

</ConfigurationDatabase>

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 39

3.4.5 Defining Exceptions

Exceptions allow asynchronous events to be generated and captured by CCTK. Exceptions are
a special type of descriptor. There is an exception descriptor analogous to each measurement
descriptor (i.e. AnalogMeasurement/AnalogException, DiscreteMeasurement/
DiscreteException, etc.). Each measurement has the option of defining no exception, defining
an exception in-line, or sharing an exception with other measurements using an exception
reference.

When an exception is defined in-line, the appropriate exception element for the measurement
type (for example, UnsignedIntException for an UnsignedIntMeasurement) is embedded
within the measurement element. Listing 3-18 shows an example of a DiscreteException
defined in-line.

An exception can also be defined via a reference. When an exception is defined using a
reference, the exception descriptor is defined elsewhere in the database and only a reference
to the name is embedded within the measurement element. The element ExceptionReference
is used to reference an exception from within an element. Listing 3-20 shows an example of
an ExceptionReference used within a ByteArrayMeasurement. Table 3-21 presents the
attributes associated with the ExceptionReference element.

Table 3-21: ExceptionReference attributes

Name XML Type Data Type Shared Required Default Value

attribute string yes yes –
name

Name of the exception that is being referenced.

Exceptions are defined in the database. Each exception is composed of one or more exception
conditions with a maximum number of conditions based upon the type. An exception
condition is defined as a mathematical comparison. The generic form of the mathematical
comparison is as follows:

x (condition) value (conjunction) x (condition) value
Where x is the current value of the measurement and value, condition, and conjunction are all
user input. The valid conjunctions for CCTK are:

<, >, <=, >=, ==, !=
The valid conditions for CCTK are:

&&, ||
An example of an exception condition is:

x < 10 || x > 20
Since some conjunctions/conditions are not appropriate for all measurements, Table 3-22 lists
the restrictions placed upon each measurement.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 40

Table 3-22: Exception restrictions based upon measurement type

Measurement Type Number of Conditions Restrictions
Analog 8 No restrictions.
Discrete 1 Conjunctions cannot be used with discretes. Only the

== and != conditions are valid.
SignedInt 8 No restrictions.

UnsignedInt 8 No restrictions.
ByteArray 1 Only the == and != conditions are valid.

String 1 Only the == and != conditions are valid.

Table 3-23 presents the valid attributes for an exception element.
Table 3-23: Exception attributes

Name XML Type Data Type Shared Required Default Value

attribute string yes no 0
characteristics

An integer number that the user may use however is necessary for their application.

attribute string yes no (none)
notice A link to a notice descriptor that will be generated any time a change in the exception

occurs.

Listing 3-22 presents a sample configuration file with an analog exception defined externally
to a group of analog measurements. The analog exception is referenced from the analog
measurements via the group defaults. Groups are covered in more detail in Section 3.4.11.

Listing 3-22: Configuration database exception element example

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<AnalogException name="Sample Analog Exception" active="true" table="mdt">

<Exception characteristic="1" notice="Cautionary Notice">

x < 10.0 || x > 90.0</Exception>

<Exception characteristic="1" notice="Critical Notice">

x < 5.0 || x > 95.0</Exception>

</AnalogException>

<AnalogMeasurementGroup>

<AnalogMeasurementDefaults>

<ExceptionReference name=”Sample Analog Exception” />

</AnalogMeasurementDefaults>

<AnalogMeasurement name=”Analog 1” />

<AnalogMeasurement name=”Analog 2” />

<AnalogMeasurement name=”Analog 3” />

</AnalogMeasurementGroup>

</ConfigurationDatabase>

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 41

In XML, remember that when placing ‘<’ and ‘>’ in the XML file, you must use the escape
sequences ‘<’ and ‘>’ to generate the proper results. If you are using an XML editor, the
editor should handle these escape sequences.

3.4.6 Defining Processing Modules

Processing modules perform data processing within CCTK. A processing module is an object
that converts data from one format to another using a fixed algorithm and, possibly, a set of
inputs. For example, the polynomial conversion module converts a native integer to an analog
value using the coefficients configured in the configuration database. Section 3.4.6.2 provides
more information on polynomial conversions.

Processing modules can be associated with measurements (see Section 3.4.4) and with link
records (see Section 3.4.8). Processing modules are associated with link records when the
conversion relates to the interface. Processing modules are associated with measurements
when the conversion applies to the measurement regardless of the interface it is received on.

The following sections detail the processing modules associated with the core CCTK system.

3.4.6.1 Defining Integer Conversion Processing Module
The integer conversion module can be used to normalize an input value of varying size into a
64-bit integer value. The integer conversion exists primarily to convert raw integer values of
varying data sizes into a format that can be used as the input value for both the polynomial
and piecewise linear conversion modules.

The IntegerConversion element defines an integer conversion chain. Table 3-24 shows the
attributes associated with the integer conversion processing module.

Table 3-24: IntegerConversion attributes

Name XML Type Data Type Shared Required Default Value

attribute true or false no no true
signed

Indicates if the input integer is a signed or an unsigned value.

Listing 3-23 shows an example of defining an integer conversion processing module.

Listing 3-23: Configuration database example, defining integer conversions

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<IntegerConversion name=”Int 1” signed=”false” />

</ConfigurationDatabase>

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 42

3.4.6.2 Defining Polynomial Conversion Processing Module
The polynomial conversion module is used to convert a native integer into a CCTK analog
measurement. A polynomial conversion is typically configured following an integer
conversion in a processing chain. A polynomial conversion takes the generic form:

y = c0x0 + c1x1 + c2x2 + … + c9x9

The PolynomialConversion element defines a polynomial conversion chain, shown in Table
3-25. Table 3-26 lists the attributes of the PolynomialCoefficient element.

Table 3-25: PolynomialConversion element

Name XML Type Data Type Shared Required Default Value

element n/a no yes n/a

PolynomialCoefficient Defines a polynomial coefficient for the polynomial conversion processing module. Each
polynomial coefficient can define up to ten polynomial coefficients for a ninth-order
polynomial.

Table 3-26: PolynomialCoefficient attributes

Name XML Type Data Type Shared Required Default Value

attribute integer no yes n/a
coefficient

This represents the coefficient for this value. The coefficient must be between 0-9.

attribute real no yes n/a
value

The value for this coefficient.

Listing 3-24 shows an example of defining a polynomial conversion processing module.

Listing 3-24: Configuration database example, defining polynomial conversions

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<PolynomialConversion name=”Poly 1”>

<Description>Description for Poly 1</Description>

<PolynomialCoefficient coefficient=”0” value=”2.0”>

<PolynomialCoefficient coefficient=”1” value=”1.0”>

<PolynomialCoefficient coefficient=”2” value=”0.5”>

</PolynomialConversion>

<PolynomialConversion name=”Poly 2”>

<Description>Description for Poly 2</Description>

<PolynomialCoefficient coefficient=”0” value=”121.0”>

<PolynomialCoefficient coefficient=”5” value=”1.5”>

</PolynomialConversion>

</ConfigurationDatabase>

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 43

In the above example, “Poly 1” defines the following polynomial:

y = (0.5)x2 + (1.0)x1 + (2.0)x0

or more simply:

y = 0.5x2 + x + 2
While “Poly 2” defines the following polynomial:

y = 1.5x5 + 121
Note that not every coefficient needs to be defined. If a coefficient is not defined, its value is
assumed to be zero.

3.4.6.3 Defining Piecewise Linear Conversion Processing Module
The piecewise linear conversion module is used to convert a native integer into a CCTK
analog measurement. A piecewise linear conversion is typically configured following an
integer conversion in a processing chain. A piecewise linear conversion consists of a series of
segments defined by an upper and lower bounds. Each segment has an associated linear
conversion. To convert a raw value, each segment is checked to see if the raw value is
included within the upper and lower bounds. When a segment is found, the segment’s linear
conversion is applied to raw value to obtain the processed value. The element used to define a
piecewise linear conversion chain is PiecewiseLinearConversion. Table 3-27 shows the
element associated with the piecewise linear conversion processing chain.

Table 3-27: PiecewiseLinearConversion elements

Name XML Type Data Type Shared Required Default Value

element n/a no yes n/a

PiecewiseLinearSegment Defines the segments for the piecewise linear conversion. Each segment defines a single
linear conversion to apply to the measurement when the value is within the specified range.
A maximum of 21 segments may be defined.

Each PiecewiseLinearSegment element has the attributes defined in Table 3-28.

Table 3-28: PiecewiseLinearSegment attributes

Name XML Type Data Type Shared Required Default Value

attribute integer no yes n/a
low

The lower bounds for this segment.

attribute integer no yes n/a
high

The upper bounds for this segment.

attribute real no yes n/a
a0

The 0th order coefficient associated with this conversion.

attribute real no yes n/a
a1

The 1st order coefficient associated with this conversion.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 44

Listing 3-25 shows an example of defining a piecewise linear conversion processing module.

Listing 3-25: Configuration database example, defining piecewise linear conversions

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<PiecewiseLinearConversion name=”Piece 1”>

<Description>Description for Piece 1</Description>

<PiecewiseLinearSegment low=”0” high=”5” a0=”1.5” a1=”1.0” />

<PiecewiseLinearSegment low=”5” high=”10” a0=”6.5” a1=”1.0” />

<PiecewiseLinearSegment low=”10” high=”100” a0=”16.5” a1=”2.0” />

</PiecewiseLinearConversion>

<PiecewiseLinearConversion name=”Piece 2”>

<Description>Description for Piece 2</Description>

<PiecewiseLinearSegment low=”0” high=”200” a0=”0.0” a1=”1.0” />

<PiecewiseLinearSegment low=”200” high=”1000” a0=”200.0” a1=”1.1” />

</PiecewiseLinearConversion>

</ConfigurationDatabase>

3.4.6.4 Defining Processing Chain Processing Module
CCTK allows a series of processing modules to be linked together to form a processing chain.
A processing chain passes the value from module to the next, each module modifying the
value with an appropriate algorithm. The ProcessingChain element is used to define a
processing chain. Table 3-29 shows the valid elements associated with a processing chain.

Table 3-29: ProcessingChain elements

Name XML Type Data Type Shared Required Default Value

element n/a yes no (none)
ProcessingReference

Defines a reference to a processing module for this chain.
element n/a yes no (none)

<any processing element> Defines a processing module to associate with this chain in-line. In this case, any valid
processing element (such as PolynomialConversion) can be nested within a processing
chain declaration.

Listing 3-26 shows an example of defining several ProcessingChain elements.

Listing 3-26: Configuration database example, defining piecewise linear conversions

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 45

<ConfigurationDatabase>

<IntegerConversion name=”Integer Conversion”>

[… details removed …]

</IntegerConversion>

<PolynomialConversion name=”Polynomial Conversion”>

[… details removed …]

</PolynomialConversion>

<ProcessingChain name=”Chain 1”>

<ProcessingReference name=”Integer Conversion” />

<ProcessingReference name=”Polynomial Conversion” />

</ProcessingChain>

<ProcessingChain name=”Chain 2”>

<IntegerConversion name=”In-line Integer Conversion”>

[… details removed …]

</IntegerConversion>

<PolynomialConversion name=”In-line Polynomial Conversion”>

[… details removed …]

</PolynomialConversion>

</ProcessingChain>

<ProcessingChain name=”Chain 3”>

<ProcessingReference name=”Integer Conversion” />

<PiecewiseLinearConversion name=”In-line Piecewise Conversion”>

[… details removed …]

</PiecewiseLinearConversion>

</ProcessingChain>

</ConfigurationDatabase>

The above example defines three processing chains. “Chain 1” is defined entirely with
references. “Chain 2” is defined entirely with in-lined modules. “Chain 3” is defined with a
mix of references and in-lined modules.

Since processing chains are a type of processing module, it is possible to nest a processing
chain within another processing chain. This feature can be used to create complex, shared
processing chains.

3.4.6.5 Defining User Defined Conversion Processing Module
The user-defined conversion processing module allows you to customize the data processing
algorithms within CCTK. Using this module, you can insert custom conversion functions into
the standard measurement conversion flow. The attribute for user-defined conversion
processing modules is shown in Table 3-30. An example of user-defined conversions is also
provided below.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 46

Table 3-30. UserDefinedConversion attributes

Name XML Type Data Type Shared Required Default Value

attribute string n/a No UserDefinedConversion
moduleName Defines the conversion algorithm to be used in processing the data coming into the

processing module.

Listing 3-27. Configuration database example, defining user-defined conversions

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<AnalogMeasurement name="Example Analog">

<UserDefinedConversion name=”Sine Conversion” moduleName=”Sine” />

</AnalogMeasurement>

</ConfigurationDatabase>

The example in Listing 3-27 identifies a custom processing function named Sine to be used in
converting the analog measurement’s value from raw to processed form. The example
assumes a processing function corresponding to the name Sine has been created and made
available as a dynamic processing module. Reference the “Processing Module Development”
section in the CCTK Developer’s Manual for more details on creating and instantiating
custom processing functions to be used by the user defined conversion processing module.

3.4.7 Defining Notices

A notice is a notification of an event or message within a CCTK project. Notices are defined
using the NoticeDescriptor element. Since notices are a type of descriptor, they inherit all of
the properties associated with a Descriptor (see Section 3.4.3). Table 3-31 lists the valid
elements/attributes to use when defining a notice descriptor. Table 3-32 and Table 3-33 list
the attributes associated with the NoticeCompression and NoticeDistribution elements
respectively.

Table 3-31: Notice descriptor elements and attributes

Name XML Type Data Type Shared Required Default Value

attribute string yes no Informational
criticality

Criticality of the notice, must be Informational, Cautionary, or Critical.

element n/a yes no –
NoticeCompression

Defines the compression characteristics for this notice.

element n/a yes no –
NoticeDistribution

Defines the distribution characteristics for this notice.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 47

The criticality attribute indicates the severity of a notice, and is always tied to a particular
notice. The possible values of criticality are “Informational”, “Critical”, and “Cautionary”.
The default value is “Informational”.

Table 3-32: NoticeCompression attributes

Name Type Shared Required Default Value

attribute yes no true
active

Indicates if notice compression is active for this notice.

attribute yes no 100
minimumMicroseconds Indicates the minimum number of microseconds, which must pass before CCTK will

process the same system notice twice in a row.

Notice compression is used to limit the flow of a notice through the system by enforcing a
minimum time between notices. If notice compression is active for a notice, that notice will
not be processed by the system if it is received within minimumMicroseconds of the last time
that notice was received. The primary purpose of notice compression is to reduce the system
load when a single message is repeatedly sent through the system in a short period of time.
Notice compression is inactive by default.

Table 3-33: NoticeDistribution attributes

Name XML Type Data Type Shared Required Default Value

attribute true or false yes no true
distributeOverChannel Indicates that the notice should be distributed over channels using the CCTK standard

distribution methods.

attribute true or false yes no true
distributeOverFile

Indicates that the notice should be placed in the system notice file in the log directory.

attribute string yes no STDARCH
distributeToChannels Lists the channels that the notice packet should be written to. This is usually only set to the

default of STDARCH.

Notice distribution controls which processes or files receive a notice after it is generated. If
distributeOverChannel is active, the notice will be sent to any process that has registered to
receive it. This typically includes the archive subsystem and any user process that may have
registered for notices. Therefore, to have a notice archived, distributeOverChannel must be
active and distributeToChannels set to STDARCH. This is the default. If distributeOverFile is
active, the notice will be added to the global system notice file, which contains a list of all
notices generated during the execution of the current project. This file is used by the
SysMsgGui to obtain a list of system messages. So, if this notice is intended to be displayed in
the SysMsgGui application, distributeOverFile must be active.

Listing 3-28 presents an example of defining notices in the configuration database.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 48

Listing 3-28: Configuration database example, defining notice descriptors

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<NoticeDescriptor name=”Sample Notice 1” />

<NoticeDescriptor name="Sample Notice 2" table="ndt" criticality="Informational">

<Description>Description for Sample Notice 2</Description>

<NoticeCompression active="true" minimumMicroseconds="100" />

<NoticeDistribution distributeOverChannel="yes" distributeOverFile="yes" />

</NoticeDescriptor>

</ConfigurationDatabase>

“Sample Notice 1” shows the minimum required fields for defining a notice descriptor. Only
the name attribute is necessary. “Sample Notice 2” shows all of the fields that are valid for a
notice descriptor. The fields not described in the descriptor section are discussed below.

3.4.8 Defining Link Records

Link records are used to describe a block of information. Link records are used in both
command definition and packet decommutation definition. Since link records are not a
descriptor, they cannot appear alone in the configuration database. They must be embedded in
another descriptor element. This section describes the basics of defining link records. They
will be further expanded upon in the packet decommutation sections.

There are three types of link records defined in the CCTK configuration database:

! MeasurementLinkRecord: Used in PacketDecomDescriptor to link a measurement to a
block of data.

! InlineCommandParameterLinkRecord: Used in the commanding descriptors to specify a
command parameter with its data in-line with the link record.

! InputCommandParameterLinkRecord: Used in the commanding descriptors to specify a
command parameter that is passed in as part of the command.

! PredefinedCommandParameterLinkRecord: used in the command descriptors to specify
a command parameter that is predefined in the database.

Each link record is used to describe the position of a piece of data within a block of bytes.
Therefore, all link records share a common set of attributes that are used to locate the data
within the block of bytes. Each of the link records defined above support the attributes listed
in Table 3-34.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 49

Table 3-34: Shared link record attributes

Name XML Type Data Type Shared Required Default Value

attribute true or false n/a no true
active Indicates if this link record is active. If a link record is inactive, it will be ignored during

processing.

attribute integer n/a yes n/a
startWord

The starting word associated with this link record.

attribute integer n/a yes n/a
startBit

The starting bit associated with this link record.

attribute integer n/a yes n/a
bitLength

The bit length associated with this link record.

Once the data within the block of bytes is located, the link record is used to link that block
with some value or measurement. The InlineCommandParameterLinkRecord links the block
of data to a value that is stored with the link record. The other link records link the block of
data to a CCTK measurement. The following tables show the specific fields associated with
each link record.

InlineCommandParameterLinkRecord supports the additional attribute listed in Table 3-35.

Table 3-35: InlineCommandParameterLinkRecord attribute

Name XML Type Data Type Shared Required Default Value

attribute integer – yes –
value

The value associated with this link record.

MeasurementLinkRecord, InputCommandParameterLinkRecord, and
PredefinedCommandParameterLinkRecord support the additional elements listed in Table
3-36.

Table 3-36: MeasurementLinkRecord, InputCommandParameterLinkRecord, and
PredefinedCommandParameterLinkRecord elements

Name XML Type Data Type Shared Required Default Value

element n/a n/a yes n/a
MeasurementReference

A reference to a measurement descriptor.

element n/a n/a yes n/a

{any}Measurement A measurement descriptor defined in-line with the link record. This can be either
AnalogMeasurement, DiscreteMeasurement, UnsignedIntegerMeasurement,
SignedIntegerMeasurement, etc …

Only one measurement may be referenced from these link records. The measurement
reference can be in the form of a MeasurementReference element, with the appropriate name
specified. The measurement reference can also be in the form of an in-line measurement
declaration where the measurement is declared in-line with the link record. In this case, any
valid measurement element may be placed in-line.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 50

Table 3-37 shows the valid attributes for the MeasurementReference element.

Table 3-37: MeasurementReference elements

Name XML Type Data Type Shared Required Default Value

attribute string n/a yes n/a
name

The name of the measurement being referenced.

3.4.9 Defining Packet Decommutation Records

The PktDcom process uses information stored in packet decommutation records to break
blocks of data apart into individual measurements. Many different types of external interfaces
generate blocks of data in a consistent, defined format. For these interfaces, PktDcom can be
used to break the block of data into individual measurements. PCM is one example of an
external interface that uses PktDcom to generate measurements from blocks of data.

PktDcom records are defined in the database using the PacketDcomDescriptor element. Table
3-38 lists the valid elements for a PacketDcomDescriptor.

Table 3-38: PktDcom descriptor elements

Name XML Type Data Type Shared Required Default Value

element n/a yes no (none)

RawMeasurementLinkRecord Defines the raw measurement link record for this decommutation descriptor. The raw
measurement is typically the entire block of data, but it does not have to be. This
special record is used when an interface allows raw dump to be enabled/disabled.

element n/a yes no (none)

MeasurementLinkRecord This element lists the measurement link records associated with this decommutation
record. Typically, multiple MeasurementLinkRecords are defined for each
PacketDcomDescriptor.

Listing 3-29 shows an example of a packet decom descriptor.

Listing 3-29: Configuration database example, defining packet decommutation descriptors

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<AnalogMeasurement name=”Measurement Reference 1” />

<AnalogMeasurement name=”Measurement Reference 2” />

<PacketDcomDescriptor name="Packet Decom">

 <Description>Packet Decom Description</Description>

<RawMeasurementLinkRecord startWord="0" startBit="0" bitLength="32">

<MeasurementReference name="Measurement Reference 1"/>

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 51

</RawMeasurementLinkRecord>

<MeasurementLinkRecord startWord="0" startBit="0" bitLength="8">

<AnalogMeasurement name="Inline Analog" table="mdt"/>

</MeasurementLinkRecord>

<MeasurementLinkRecord startWord="0" startBit="8" bitLength="8">

<MeasurementReference name="Measurement Reference 2"/>

</MeasurementLinkRecord>

<MeasurementLinkRecord startWord="1" startBit="0" bitLength="1">

<DiscreteMeasurement name="Inline Discrete ">

<Description>Test Description</Description>

</DiscreteMeasurement>

</MeasurementLinkRecord>

</PacketDcomDescriptor>

</ConfigurationDatabase>

Note that in many cases, the PktDcomDescriptor element is actually defined in-line in an
interface descriptor.

3.4.10 Defining Interfaces

CCTK always allows at least two interface types to be defined:

! Archive: The archive interface provides configuration and control of the archive
subsystem within CCTK.

! Time Control: The time control interface provides configuration and control of the GMT
and CDT timing subsystems within CCTK.

These interfaces are discussed in detail in the following sections. In addition, the optional peer
interface is detailed in this section.

CCTK can also be customized to support additional external data interfaces. Since each
interface has a unique definition, they are described in detail in the documentation included
with the particular interface.

Commands, ports, buses, status measurements, and notices are all typically defined
automatically by interface creation.

3.4.10.1 Defining an ARS Interface
If CCTK has an archive subsystem, an archive interface must be defined. The archive
interface is the point of configuration for the archive subsystem processes. Details on the
execution of the archive subsystem processes can be found in Section 3.5.2. Both the database
configuration and the process execution must be present in a CCTK project for the archive
subsystem to work correctly.

Only one archive subsystem interface may be defined in a CCTK project and it must be
defined as shown below in Listing 3-30 for correct operation.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 52

Listing 3-30: Configuration database example, defining the archive interface

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<ArsInterface name="ARS_port_descriptor">

<ArsStartCommand name="Start_ARS" />

<ArsStopCommand name="Stop_ARS" />

<ArsCloseArchiveCommand name="ARS_Close_Archive" />

<ArsStatusMeasurement name="ARS_Status" table="mdt"/>

</ArsInterface>

</ConfigurationDatabase>

3.4.10.2 Defining a Time Control Interface
If CCTK needs to manage countdown time, a time control interface must be defined. The time
control interface is the point of configuration for the time control process. Details on the
executing the time control process can be found in Section 3.5.6. Both the database
configuration and the process execution must be present in a CCTK project for time control to
work correctly.

Only one time control interface may be defined in a CCTK project and it must be defined as
shown below in Listing 3-31 for correct operation.

Listing 3-31: Configuration database example, defining the time control interface

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<TimeControlInterface name="CDTime_port">

<TimeControlCancelCdtCommand name="Cancel_CDTime"/>

<TimeControlSetCdtCommand name="Set_CDTime"/>

<TimeControlStartCdtCommand name="Start_CDTime"/>

<TimeControlStopCdtCommand name="Stop_CDTime"/>

<TimeControlCdtStatusMeasurement name="CDTime_Status"/>

<TimeControlCdtTextMeasurement name="CDTime_Time_Text"/>

<TimeControlCdtValueMeasurement name="CDTime_Time_Value"/>

<TimeControlGmtTextMeasurement name="GMTime_Time_Text"/>

<TimeControlGmtValueMeasurement name="GMTime_Time_Value"/>

</TimeControlInterface>

</ConfigurationDatabase>

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 53

3.4.10.3 Defining a Peer Sender Interface
PeerSender allows CCTK to transmit data from the sending peer to the receiving peer via a
network connection. PeerSender can be configured to support both connection and
connectionless sockets. Broadcast and multicast support is also provided when a
connectionless socket is configured. This section details how to optionally configure
PeerSender through the configuration database. If PeerSender is not configured through the
configuration database, it must be configured via the command line arguments. Section
3.5.8.1 provides additional information on the PeerSender process.

The PeerSenderInterface element controls the configuration information associated with a
PeerSender process. Since PeerSenderInterface is a type of descriptor, therefore all of the
elements/attributes associated with descriptors apply to it. Table 3-39 lists the elements
unique to the PeerSenderInterface.

Table 3-39: PeerSenderInterface elements

Name XML Type Data Type Shared Required Default Value

element n/a n/a yes (none)
SocketPort This element defines the properties associated with the socket. See Table 3-40 for

the elements and attributes associated with this element. This element is required.

element n/a n/a no (none)

PeerSenderStartDataTransmissi
onCommand

This element allows the user to define a custom start data transmission command.
The user may override the name of the command as well as any other properties of
the command. This element is a type of SystemCommand. Under normal
circumstances, this should not need to be overridden.

element n/a n/a no (none)

PeerSenderStopDataTransmissi
onCommand

This element allows the user to define a custom stop data transmission command.
The user may override the name of the command as well as any other properties of
the command. This element is a type of SystemCommand. Under normal
circumstances, this should not need to be overridden.

element n/a n/a no (none)

PeerSenderDataTransmissionSt
atusMeasurement

This element allows the user to define a custom data transmission status
measurement. The user may override the name of the status measurement as well as
any other properties of the measurement. This element is a type of
DiscreteMeasurement. Under normal circumstances, this should not need to be
overridden.

As with most interfaces in CCTK, the configuration database allows the user to override the
default commands and measurements. This allows the user to change the properties of the
command/measurement within the limits of the type that is required (i.e.
PeerSenderDataTransmissionStatusMeasurement is a discrete measurement so only the
properties associated with a discrete may be modified). Unless you wish to change the name
of a command/measurement, it is recommended that you do not override the default settings.

Each PeerSender is associated with a socket. The socket is configured through the SocketPort
element. Table 3-40 lists the attributes associated with a SocketPort.

Table 3-40: PeerSenderInterface SocketPort attributes

Name XML Type Data Type Shared Required Default Value

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 54

Name XML Type Data Type Shared Required Default Value

attribute n/a n/a yes (none)

mode This attribute can take one of five values: pointtopoint, connectionless, broadcast,
multicast, or server. This attribute indicates the mode in which the socket should be
opened. This attribute is required.

attribute n/a n/a (see notes) (see notes)

localAddress
This attribute specifies the local address for the socket. The local address is optional
for all modes. If not specified, it defaults to any available address. The local address
must always be a valid address for the local host. localAddress may be specified as a
textual string or as an IP address in quad notation (xxx.xxx.xxx.xxx). If a string is
specified, a standard lookup will be performed.

attribute n/a n/a (see notes) (see notes)

localPort
This attribute specifies the local port for the socket. The local port is required for
point-to-point and server and optional for the other modes. If not specified, local port
defaults to any port. The local port cannot be below 1024 unless you are running as
root. localPort may be specified as a textual string or as a port number. If a string is
specified, a standard services lookup will be performed.

attribute n/a n/a (see notes) (see notes)

remoteAddress

This attribute specifies the remote address for the socket. The remote address is
ignored when operating in point-to-ponit or server mode. The remote address is
required for connectionless and multicast. It is optional for broadcast. If not specified
in broadcast mode, it defaults to “255.255.255.255”. remoteAddress may be specified
as a textual string or as an IP address in quad notation (xxx.xxx.xxx.xxx). If a string is
specified, a standard lookup will be performed.

attribute n/a n/a (see notes) (see notes)

remotePort
This attribute specifies the remote port for the socket. The remote port is required for
connectionless, broadcast, and multicast. It is ignored for the other two modes. The
remote port cannot be below 1024 unless you are running as root. remotePort may be
specified as a textual string or as a port number. If a string is specified, a standard
services lookup will be performed.

PeerSender can operate in one of five different modes. Each mode represents a different
socket configuration, and in some instances, different behavior. Each mode has slightly
different configuration needs for addresses/ports. Table 3-41 summarizes the
optional/required ports/addresses for a PeerSenderInterface based upon mode. For more
information on the individual modes, please see Section 3.5.8.1.

Table 3-41: PeerSender Port/Address Requirements

Mode Local
Address

Local
Port

Remote
Address

Remote
Port

Server optional required ignored ignored
Point-to-Point optional required ignored ignored
Connectionless optional optional required required
Broadcast optional optional optional required
Multicast optional optional required required

Listing 3-32 presents an example of defining peer sender interfaces in the configuration
database.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 55

Listing 3-32: Configuration database example, defining the peer sender interface

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<PeerSenderInterface name="Sender #1">

<SocketPort mode=”pointtopoint” localPort=”10000” />

</PeerSenderInterface>

<PeerSenderInterface name=”Sender #2”>

<SocketPort mode=”connectionless” remoteAddress=”192.168.1.1”

remotePort=”20000” />

</PeerSenderInterface>

<PeerSenderInterface name=”Sender #3”>

<SocketPort mode=”broadcast” localAddress=”192.168.1.1” localPort=”20000”

remoteAddress=”192.168.255.255” remotePort=”20001” />

<PeerSenderStartDataTransmissionCommand name=”Start Sender #3” />

<PeerSenderStopDataTransmissionCommand name=”Stop Sender #3” />

<PeerSendrDataTransmissionStatusMeasurement name=”Sender #3 Status” />

</PeerSenderInterface>

</ConfigurationDatabase>

“Sender #1” defines a PeerSenderInterface operating in point to point mode. The local port
will be bound to port 10000. The local address will default to any available address (thus a
connection could be received on any Ethernet interface for a multi-homed host). In this mode,
PeerSender will accept a single connection from a remote receiver. Once the connection is
established, data transmission will begin.

“Sender #2” defines a PeerSenderInteface operating in connectionless mode. The remote
address and remote port data will be sent to is “192.168.1.1” and “20000” respectively. Any
available local address/port will be used for local socket. In this mode, data transmission will
begin immediately.

“Sender #3” defines a PeerSenderInterface operating in broadcast mode. The local address is
“192.168.1.1”. This must be valid Ethernet address for the host. The local port is “20000”.
When broadcasting the data, it will be broadcast to the address “192.168.255.255” and to the
port “20001”. In addition, the names of the start data transmission command, stop data
transmission command, and data transmission status measurement were changed from their
defaults. In this mode, data transmission will begin when the data transmission enabled
command is received.

3.4.10.4 Defining a Peer Receiver Interface
PeerReceiver allows CCTK to receive data from a sending peer via a network connection.
PeerReceiver can be configured to support both connection and connectionless sockets
Connectionless sockets have the capability to broadcast and multicast data. This section
details how to optionally configure PeerReceiver through the configuration database. If
PeerReceiver is not configured through the configuration database, it must be configured via

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 56

the command line arguments. Section 3.5.8.2 provides additional information on the
PeerReceiver process.

The PeerReceiverInterface element contains the configuration information associated with a
PeerReceiver process. Since PeerReceiverInterface is a type of descriptor, therefore all of the
elements/attributes associated with descriptors apply to it. Table 3-42 lists the elements
unique to the PeerReceiverInterface.

Table 3-42: PeerReceiverInterface elements

Name XML Type Data Type Shared Required Default Value

element n/a n/a yes (none)
SocketPort This element defines the properties associated with the socket. See Table 3-43 for

the elements and attributes associated with this element. This element is required.

element n/a n/a no (none)

PeerReceiverStartDataAcquisitio
nCommand

This element allows the user to define a custom start data acquisition command. The
user may override the name of the command as well as any other properties of the
command. This element is a type of SystemCommand. Under normal circumstances,
this should not need to be overridden.

element n/a n/a no (none)

PeerReceiverStopDataAcquisitio
nCommand

This element allows the user to define a custom stop data acquisition command. The
user may override the name of the command as well as any other properties of the
command. This element is a type of SystemCommand. Under normal circumstances,
this should not need to be overridden.

element n/a n/a no (none)

PeerReceiverDataAcquisitionSta
tusMeasurement

This element allows the user to define a custom data acquisition status measurement.
The user may override the name of the status measurement as well as any other
properties of the measurement. This element is a type of DiscreteMeasurement.
Under normal circumstances, this should not need to be overridden.

element n/a n/a no (none)

PeerReceiverStartDataProcessi
ngCommand

This element allows the user to define a custom start data processing command. The
user may override the name of the command as well as any other properties of the
command. This element is a type of SystemCommand. Under normal circumstances,
this should not need to be overridden.

element n/a n/a no (none)

PeerReceiverStopDataProcessi
ngCommand

This element allows the user to define a custom stop data processing command. The
user may override the name of the command as well as any other properties of the
command. This element is a type of SystemCommand. Under normal circumstances,
this should not need to be overridden.

element n/a n/a no (none)

PeerReceiverDataProcessingSt
atusMeasurement

This element allows the user to define a custom data processing status
measurement. The user may override the name of the status measurement as well as
any other properties of the measurement. This element is a type of
DiscreteMeasurement. Under normal circumstances, this should not need to be
overridden.

element n/a n/a (see below) (none)

MeasurementsToReceive This element allows the user to define a mapping between measurements on the
sender system and measurements on the remote system. It lists the measurements
the user is to receive.

As with most interfaces in CCTK, the configuration database allows the user to override the
default commands and measurements. This allows the user to change the properties of the

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 57

command/measurement within the limits of the type that is required (i.e.
PeerReceiverDataAcquisitionStatusMeasurement is a discrete measurement so only the
properties associated with a discrete may be modified). Unless you wish to change the name
of a command/measurement, it is recommended that you do not override the default settings.

Table 3-43 lists the attributes associated with a SocketPort.

Table 3-43: PeerReceiverInterface SocketPort attributes

Name XML Type Data Type Shared Required Default Value

attribute string n/a yes (none)

mode This attribute can take one of four values: point-to-point, connectionless, broadcast,
or multicast. This attribute indicates the mode in which the socket should be opened.
This attribute is required.

attribute string n/a (see notes) (see notes)

localAddress

This attribute specifies the local address for the socket. The local address is optional
for connectionless, broadcast, and multicast. It is ignored in point-to-point. If not
specified, it defaults to any available address. The local address must always be a
valid address for the local host. localAddress may be specified as a textual string or
as an IP address in quad notation (xxx.xxx.xxx.xxx). If a string is specified, a standard
lookup will be performed.

attribute string n/a (see notes) (see notes)

localPort
This attribute specifies the local port for the socket. The local port is required for
connectionless, broadcast, and multicast. It is ignored for point-to-point. If not
specified, local port defaults to any port. The local port cannot be below 1024 unless
you are running as root. localPort may be specified as a textual string or as a port
number. If a string is specified, a standard services lookup will be performed.

attribute string n/a (see notes) (see notes)

remoteAddress
This attribute specifies the remote address for the socket. The remote address is
optional for connectionless and multicast. It is required for point-to-point.
remoteAddress may be specified as a textual string or as an IP address in quad
notation (xxx.xxx.xxx.xxx). If a string is specified, a standard lookup will be performed.

attribute string n/a (see notes) (see notes)

remotePort
This attribute specifies the remote port for the socket. The remote port is optional for
connectionless, broadcast, and multicast. It is required for point-to-point. The remote
port cannot be below 1024 unless you are running as root. remotePort may be
specified as a textual string or as a port number. If a string is specified, a standard
services lookup will be performed.

PeerReceiver can operate in one of four different modes. Each mode represents a different
socket configuration, and in some instances, different behavior. Each mode has slightly
different configuration needs for addresses/ports. Table 3-44 summarizes the
optional/required ports/addresses for a PeerReceiverInterface based upon mode. For more
information on the individual modes, please see Section 3.5.8.2.

Table 3-44: PeerReceiver Port/Address Requirements

Mode Local
Address

Local
Port

Remote
Address

Remote
Port

Point-to-Point ignored ignored required required
Connectionless optional required optional optional

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 58

Mode Local
Address

Local
Port

Remote
Address

Remote
Port

Broadcast optional required optional optional
Multicast optional required optional optional

Table 3-45 lists the element associated with a MeasurementsToReceive element. The sole
purpose of this element is to provide for a list of measurements that define how to map
measurements between the sender and the receiver.

Table 3-45: MeasurementsToReceive elements

Name XML Type Data Type Shared Required Default Value

element n/a n/a yes (none)

MapMeasurement This element provides data for mapping a measurement on the local system to a
measurement on the remote system. Multiple MapMeasurements may be specified
within a single MeasurementsToRecieve.

Table 3-46 lists the elements and attributes associated with MapMeasurement.

Table 3-46: MapMeasurement elements and attributes

Name XML Type Data Type Shared Required Default Value

attribute string n/a yes (none)
remoteName

The name of the measurement on the remote system.

attribute n/a n/a no true
active Indicates if this mapping should be active or inactive. If active is set to false, this

mapping will not be processed.

element n/a n/a yes n/a
MeasurementReference A reference to a measurement descriptor. Only one of {any}Measurement or

MeasurementReference may be defined.

element n/a n/a yes n/a

{any}Measurement
A measurement descriptor defined in-line with the link record. This can be either
AnalogMeasurement, DiscreteMeasurement, UnsignedIntegerMeasurement,
SignedIntegerMeasurement, etc … Only one of {any}Measurement or
MeasurementReference may be defined.

Each MapMeasurement element defines the mapping between a measurement received from
the remote sender and a measurement on the local receiver. This provides a simple way for
the user to associate measurements on the remote system with measurements on the local
system. This is one method used by PeerReceiver to map measurements between the peers.
Section 3.5.8.2 describes additional methods thus, it may only be necessary to specify this
section if the names are different between the sending and receiving peers.

Listing 3-33 presents an example of defining peer receiver interfaces in the configuration
database.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 59

Listing 3-33: Configuration database example, defining the peer receiver interface

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase>

<PeerReceiverInterface name="Receiver #1">

<SocketPort mode=”connectionless” localPort=”10000” />

</PeerReceiverInterface>

<PeerReceiverInterface name=”Receiver #2”>

<SocketPort mode=”pointtopoint” remoteAddress=”192.168.1.1”

remotePort=”20000” />

<MeasurementsToReceive>

<MapMeasurement remoteName=”Remote Meas #1”>

<MeasurementReference name=”Local Meas #1”/>

</MapMeasurement>

<MapMeasurement remoteName=”Remote Meas #2”>

<AnalogMeasurement name=”Local Meas #2” />

</MapMeasurement>

<MapMeasurement remoteName=”Remote Meas #3”>

<DiscreteMeasurement name=”Local Meas #3” />

</MapMeasurement>

</MeasurementsToReceive>

</PeerReceiverInterface>

<PeerReceiverInterface name=”Sender #3”>

<SocketPort mode=”broadcast” localAddress=”192.168.1.1” localPort=”20000”

remoteAddress=”192.168.255.255” remotePort=”20001” />

<PeerReceiverStartDataAcquisitionCommand name=”Start Acq Receiver #3” />

<PeerReceiverStopDataAcquisitionCommand name=”Stop Acq Receiver #3” />

<PeerReceiverDataAcquisitionStatusMeasurement name=”Receiver #3 Acq Status”

/>

<PeerReceiverStartDataProcessingCommand name=”Start Proc Receiver #3” />

<PeerReceiverStopDataProcessingCommand name=”Stop Proc Receiver #3” />

<PeerReceiverDataProcessingStatusMeasurement name=”Receiver #3 Proc Status”

/>

</PeerSenderInterface>

</ConfigurationDatabase>

“Receiver #1” defines a PeerReceiverInterface operating in connectionless mode. The local
port will be bound to port “10000”. The local address will default to any available address
(thus a connection could be received on any Ethernet interface for a multihomed host).

“Receiver #2” defines a PeerReceiverInteface operating in point-to-point mode. A connection
attempt will be made to the remote address “192.168.1.1” and the remote port “20000”. Any
available local address/port will be used for local socket. In addition, the measurements listed
will be mapped. “Remote Meas #1” will be mapped to “Local Meas #1”, “Remote Meas #2”
will be mapped to “Local Meas #2”, and “Remote Meas #3” will be mapped to “Local Meas

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 60

#3”. The user must ensure that the data types for the different measurements match. If they
do not, conversions must be provided to convert the measurements between data types.

“Receiver #3” defines a PeerReceiverInterface operating in broadcast mode. The local
address is “192.168.1.1”. This must be valid Ethernet address for the host. The local port is
“20000”. When receiving the data, the data must be addressed to address “192.168.255.255”
and to port “20001”. In addition, the names of all commands and status measurements were
changed from their original values.

3.4.11 Using Groups

One of the most powerful features of the CCTK configuration database is the ability to group
items together that share common properties. When a group is created, all items of the group
inherit the default properties associated with that group. It is possible for individual items
within the group to override the default properties. Groups can be nested within one another
to form a type of inheritance tree. Listing 3-34 presents the basic grouping syntax. Listing
3-35 shows an example.

Listing 3-34: Configuration database general grouping syntax

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase shlibs=”[… dynamic libraries …]”>

<ParentGroup>

<ParentDefaults [… default attributes associated with parent …]>

[… default elements associated with parent …]

</ParentDefaults>

<ChildGroup>

<ChildDefaults [… default attributes associated with child …]>

[… default elements associated with child …]

</ChildDefaults>

<Child [… any attribute associated with child …]>

[… child elements …]

</Child>

[… more children …]>

</ChildGroup>

[… more parent, parent group, children or child groups …]

</ParentGroup>

</ConfigurationDatabase>

In the above listing, the ParentGroup element has a set of defaults defined by the
ParentDefaults element. Although only one child is shown within the ParentGroup element,
any number of elements could be listed here. These could be ChildGroup or Child elements.
In addition, since the configuration database allows recursive groups, both Parent and

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 61

ParentGroup elements could appear within the top level ParentGroup. All elements within the
ParentGroup inherit the defaults of the group. Within the listed ChildGroup, another set of
defaults is shown. These defaults apply to the all elements within the ChildGroup. Again, only
one Child is shown here, but any number of Child and ChildGroup elements could be placed
here.

Appending group onto the name of an element discussed above creates a group. For example,
a group of analog measurements can be defined using the AnalogMeasurementGroup
element. Table 3-47 lists the previously discussed elements that may be grouped.

Table 3-47: Configuration database elements that may be grouped

Type Element Name Element Group Name
descriptors – DescriptorGroup
notice descriptors NoticeDescriptor NoticeDescriptorGroup
measurements – MeasurementGroup
analog measurement AnalogMeasurement AnalogMeasurementGroup
discrete measurement DiscreteMeasurement DiscreteMeasurementGroup
signed integer measurement SignedIntMeasurement SignedIntMeasurementGroup
unsigned integer measurement UnsignedIntMeasurement UnsignedIntMeasurementGroup
byte array measurement ByteArrayMeasurement ByteArrayMeasurementGroup
string measurement StringMeasurement StringMeasurementGroup

Listing 3-35 provides a real example of a group using measurements.
Listing 3-35: Configuration database grouping example

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd">

<ConfigurationDatabase shlibs=”[… dynamic libraries …]”>

<MeasurementGroup>

<MeasurementDefaults />

<MeasurementGroup rawDataSize=”4”>

<MeasurementDefaults />

<AnalogMeasurement name=”Analog 1”>

<Description>Description for Analog 1</Description>

</AnalogMeasurement>

<AnalogMeasurement name=”Analog 2”>

<Description>Description for Analog 2</Description>

</AnalogMeasurement>

</MeasurementGroup>

<MeasurementGroup>

<MeasurementDefaults />

<DiscreteMeasurementGroup>

<DiscreteMeasurementDefaults>

<DiscreteLowState code=”10” text=”Off” />

<DiscreteHighState code=”20” text=”On” />

</DiscreteMeasurementDefaults>

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 62

<DiscreteMeasurement name=”Discrete 1” />

<DiscreteMeasurement name=”Discrete 2” />

<DiscreteMeasurement name=”Discrete 3”>

<DiscreteLowState code=”0” text=”Off” />

</DiscreteMeasurement>

</DiscreteMeasurementGroup>

</MeasurementGroup>

</MeasurementGroup>

</ConfigurationDatabase>

In the above example, the DescriptorGroup contains two MeasurementGroups. The first
MeasurementGroup contains two AnalogMeasurements, which inherit the rawDataSize
attribute from MeasurementGroup. Each AnalogMeasurement defines its own name and
description. The second MeasurementGroup contains a single DiscreteMeasurementGroup.
The DiscreteMeasurementGroup contains three discretes, which inherit the high/low state
values/codes from the group. In addition, one discrete overrides the default values and defines
its own low state value/code.

Note that a hierarchy of types is present throughout the grouping. A DiscreteMeasurement is a
type of Measurement which is a type of Descriptor thus DiscreteMeasurement can be placed
inside a DiscreteMeasurementGroup, a MeasurementGroup, or a DescriptorGroup.

Another important point to note on groups is that not all elements and attributes associated
with a type may be capable of being defined in a group. For example, the name attribute,
which is associated with every descriptor, cannot appear as a default attribute. It would make
no sense to share a name between multiple descriptors. As each table/descriptor was
presented, the different attributes and sub-elements are discussed and any that can not be
shared across groups are noted. The tables listing the elements and attributes for the
descriptors in the above sections all contain a “shared” column, which indicates if the
element/attribute may be shared across groups.

A final note, many attributes and elements have default values. If the element/attribute is not
specified, the default value will be used.

3.4.12 Custom Database Components

You can extend the CCTK configuration database by adding new tables and descriptors.
When this occurs, you must define a new document type, a new dtd, and create a shared
library with the code needed to load the new tables/descriptors. The shlibs attribute is used to
specify the shared libraries needed to load custom descriptors/tables. For more information on
extending the CCTK configuration database, reference the CCTK Developer’s Manual or
contact CCT.

3.4.13 Standard System Notices

For CCTK to operate properly, a standard set of system notices must be defined in the
database. These system notices are required by the core processes to properly report errors in

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 63

the system. The standard system notices are included in the database by using the XML entity
reference to include the file containing the standard system notices. The files name is
$CCT_HOME/include/dtd/SystemNotice.xml.

A partial configuration database file that shows how to perform the entity inclusion is shown
in Listing 3-36.

Listing 3-36: Standard system notice file inclusion

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd" [

 <!ENTITY SystemNotices SYSTEM "SysNotice.xml">

]>

<ConfigurationDatabase>

[… be sure that the ndt table is defined prior to inclusion …]

&SystemNotices;

</ConfigurationDatabase>

3.4.14 Example Configuration Database

Several example configuration database files are present in the CCT examples directory
($CCT_HOME/examples). See the README file in that directory for more details. In
addition, the sample projects also contain sample databases at $CCT_HOME/projects.

3.5 Configuration of System Tasks
Each CCTK project is composed of a set of processes that are responsible for different tasks
in the system. Some processes perform archiving tasks (ArchiveControl and TamArs) while
others perform data processing tasks (DataProc and PktDcom). By configuring which
processes run for a specific project (or modes within a project), the project administrator can
control the operation of CCTK. This section discusses the tasks that must be performed for
correct operation of CCTK and the processes that perform these tasks.

3.5.1 Messaging

Messaging is an essential service of CCTK. System notices are the mechanism by which
messaging is implemented in CCTK. System notices can be added to the configuration
database (see Section 3.4.7). The developer’s API provides a simple call to generate a
message (see the CCTK Developer’s Guide). Messages can be viewed from the system
message GUI (see the CCTK User’s Guide). Messages are automatically archived and can be
retrieved.

For messaging to work correctly in a CCTK project the STDMSG channel must be present
and the Message process must be running. The Message process reads messages from
STDMSG channel, interprets them, and forwards them to interested parties, including the

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 64

system message file and the archive subsystem. Listing 3-37 provides a partial project
configuration file showing the message configuration.

Listing 3-37: Sample messaging configuration

[… project configuration file details removed …]

<Channel name=”STDMSG” size=”10000” />

<Execute waitFor="running" critical="YES">Message</Execute>

[… project configuration file details removed …]

The STDMSG channel and the Message process must be configured for each CCTK project.

3.5.2 Archive

Archive stores measurement, command, and notice information for future retrieval. CCTK
will automatically forward all changed measurements and all system notices to the
STDARCH channel. For proper CCTK operation, a process must read the STDARCH
channel to keep it from filling up. Typically, the TamArs process reads the STDARCH
channel, processes archive packets, and stores them to the archive media. If, for a particular
configuration, no data archive is necessary, CCTK should be configured to use a
ChannelReader process to read STDARCH instead.

In most cases, an archive subsystem is desirable. To configure CCTK to use the archive
subsystem, the following setup must exist:

! STDARCH channel must be defined in the project configuration file.

! TamArs must be executed in the project configuration file (see TamArs on page 162).

! ArchiveControl must be executed in the project configuration file (see ArchiveControl on
page 116).

! A valid archive configuration file must exist in the project directory (see Archive
Configuration on page 22).

! An ARS interface must be defined in the database (see ARSInterface in Section 3.4.10.1).

Table 3-36 provides a simple example of a partial project configuration file using TamArs and
ArchiveControl for the archive subsystem.

Listing 3-38: Sample archive configuration using TamArs and ArchiveControl

[… project configuration file details removed …]

<Channel name=”STDARCH” size=”10000” />

<Execute waitFor="running" critical="YES">TamArs –f ars_config.d</Execute>

<Execute waitFor=”running” critical=”YES”>ArchiveControl</Execute>

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 65

[… project configuration file details removed …]

To configure CCTK without support for archive, the following setup must exist:

! STDARCH channel must be defined in the project configuration file.

! ChannelReader must be executed in the project configuration file.

Listing 3-39 provides an example of a partial project configuration file using ChannelReader
for archiving.

Listing 3-39: Sample archive configuration using ChannelReader

[… project configuration file details removed …]

<Channel name=”STDARCH” size=”10000” />

<Execute waitFor="running" critical="YES">ChannelReader -c STDARCH -noout</Execute>

[… project configuration file details removed …]

See ChannelReader on page 126.

It is important to note that only one of the above methods can be configured at any one time.
Both ChannelReader and TamArs cannot read the STDARCH channel at the same time. If the
archive subsystem is needed, use the TamArs method; if no archive subsystem is needed, use
the ChannelReader method. Please note that it does not matter how the STDARCH channel is
read, as long as it is read. If the standard CCTK archive subsystem is not sufficient, it is
possible to create a custom archive subsystem (possibly based upon an SQL database), by
reading the data from the STDARCH channel and performing the necessary operations. The
standard CCTK API provides the necessary support for building a replacement archive
subsystem.

3.5.3 Commanding

CCTK provides underlying support for commands. For commands to operate correctly,
several system resources must be configured. These resources include:

! STDRESP channel for command responses must be defined in the project configuration
file.

! A single DataProc, reading STDRESP must be executed.

Listing 3-40 presents an example of a partial project configuration file with commanding
configured.

Listing 3-40: Sample commanding configuration

[… project configuration file details removed …]

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 66

<Channel name=”STDRESP” size=”10000” />

<Execute waitFor="running" critical="YES">DataProc –i STDRESP –t mdt</Execute>

[… project configuration file details removed …]

The commanding configuration must be present for CCTK to operate properly.

3.5.4 Health and Status

Health and status is another basic service of CCTK. For health and status to operate correctly,
several system resources must be configured. These resources include:

! STDSTATUS channel must be defined in the project configuration file.

! A single DataProc, reading STDSTATUS must be executed.

Listing 3-41 shows a sample health and status configuration.

Listing 3-41: Sample health and status configuration

[… project configuration file details removed …]

<Channel name=”STDSTATUS” size=”10000” />

<Execute waitFor="running" critical="YES">DataProc –i STDSTATUS –t mdt</Execute>

[… project configuration file details removed …]

The health and status configuration must be present for CCTK to operate properly.

3.5.5 Data Processing

Data processing processes measurement and command data within CCTK. Two processes
within CCTK perform standard data processing:

! PktDcom: Breaks blocks of contiguous data into smaller components and tags the smaller
components as measurements. PktDcom uses link descriptor records that are defined in
the configuration database to control its operations. PktDcom can be used in many
different situations; for example, PktDcom is typically used to decommutate PCM
frames. See PktDcom on page 144.

! DataProc: Takes raw values of measurements and converts them into processed values
while performing a variety of checks and comparisons. Each measurement in CCTK
defines a set of data processing parameters in the configuration database. DataProc is the
process that performs the operations associated with these parameters. See DataProc on
page 131.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 67

Data flows in to and out of both PktDcom and DataProc via channels. PktDcom takes two
channel command line arguments, an input channel and an output channel. DataProc takes a
single channel command line argument, an input channel. See the manual pages of both of
these processes for details on the exact format of the command line arguments.

Each CCTK system runs zero or more PktDcom processes and one or more DataProc
processes. External interfaces that generate blocks of data (such as PCM and IBS) typically
pass data to PktDcom. Other external interfaces will pass data to DataProc. Please see the
documentation on the individual external interfaces to see if they require PktDcom or
DataProc. Each PktDcom must feed data to a DataProc. Figure 3-1 provides a simple
graphical representation this concept.

External
Interface PktDcom

External
Interface

DataProc

Figure 3-1: Data processing data flow via channels

When configuring a CCTK system, it is important to decide how many PktDcom and/or
DataProc processes to execute. There are several advantages to running a single PktDcom
and DataProc:

! Simpler configuration.

! Less overhead operating system overhead since there will be fewer task switches.

The following advantages are associated with multiple PktDcoms and multiple DataProcs:

! Processing can be performed in parallel across multiple processors to increase
throughput.

! Problems in one processing thread will not affect other processing threads.

There is no simple way to determine the best configuration for every set of requirements.
Please contact CCT for further assistance in designing a data processing scheme to meet your
particular system needs.
Once the decision has been made on the number of PktDcom and DataProc processes to
execute, the resources can be added to the project configuration file. Figure 3-2 shows a basic
system with several external interfaces, a single PktDcom, and multiple DataProcs. Listing
3-42 provides an example of a portion of the necessary project configuration file to generate
the above system configuration.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 68

CHA1

CHA3

CHA2PktDcom

External
Interface 2

DataProc

External
Interface 3

DataProc

External
Interface 1

Figure 3-2: Example data processing configuration diagram

Listing 3-42: Sample data processing system configuration file

[… project configuration file details removed …]

<Channel name=”CHA1” size=”10000” />

<Channel name=”CHA2” size=”10000” />

<Channel name=”CHA3” size=”10000” />

<Execute waitFor="running" critical="YES">DataProc –i CHA2 –t mdt</Execute>

<Execute waitFor="running" critical="YES">DataProc –i CHA3 –t mdt</Execute>

<Execute waitFor="running" critical="YES">PktDcom –i CHA1 –o CHA2</Execute>

<Execute waitFor="running" critical="YES">EndItemInteface1 –o CHA1</Execute>

<Execute waitFor="running" critical="YES">EndItemInteface2 –o CHA1</Execute>

<Execute waitFor="running" critical="YES">EndItemInteface3 –o CHA3</Execute>

[… project configuration file details removed …]

Please note that the order of the data processing elements specified in the project
configuration file is important as the channel client (reader) must be executed before the
server (writer). Thus, DataProc must be executed before PktDcom, which must be executed
before any external interfaces.

DataProc will forward processed data to other applications within the CCTK system over
channels using one of two methods. First, it is permissible for any application to register to
receive data via a channel. When registering for the data, a channel is specified where the
information is received. No project configuration is required to support this type of data
forwarding. Second, it is permissible for any application to receive blocks of processed data
from DataProc. DataProc will write out packets of data identical to the type that it receives to
the channel specified on the command line with the –o option. Thus if DataProc receives
superpackets of linked data packets on its input channel, it will send superpackets of
processed data on its output channel. This option can be used to support time correlated data.

For example, if an interface is capable of identifying time correlated data, it could create a
superpacket of linked data packets containing the time correlated data. The superpacket could
then be sent to DataProc. DataProc would process the data normally, updating the real-time
tables, and distributing the data via channels. In addition, if the –o option was specified,
DataProc would send a superpacket of processed data to the channel specified by the –o
option. Thus, an application requiring time correlated data could read the data from that
channel and process the data as a group.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 69

Furthermore, PktDcom will send a superpacket of linked data packets to DataProc for each
block it receives. Thus it is possible to receive blocks of time correlated data if PktDcom is
used to process the data from an interface whose data is time correlated blocks of data.

Figure 3-3 graphically shows these processing scenarios while Listing 3-2 shows the
associated configuration.

CHA5

CHA3CHA1

CHA3

CHA2PktDcom DataProc

External
Interface 2

DataProc

External
Interface 1

UserApp

UserApp

Time correlated blocks
of data

Time correlated
linked data packets

Time correlated
processed data packets

Figure 3-3: Example data processing configuration diagram for time correlated data

Listing 3-43: Sample data processing system configuration file for time correlated data

[… project configuration file details removed …]

<Channel name=”CHA1” size=”10000” />

<Channel name=”CHA2” size=”10000” />

<Channel name=”CHA3” size=”10000” />

<Channel name=”CHA4” size=”10000” />

<Channel name=”CHA5” size=”10000” />

<Execute waitFor=”running” critical=”YES”>UserApp –I CHA3</Execute>

<Execute waitFor="running" critical="YES">DataProc –i CHA2 –o CH3 –t mdt</Execute>

<Execute waitFor="running" critical="YES">PktDcom –i CHA1 –o CHA2</Execute>

<Execute waitFor="running" critical="YES">EndItemInteface1 –o CHA1</Execute>

<Execute waitFor=”running” critical=”YES”>UserApp –I CHA5</Execute>

<Execute waitFor="running" critical="YES">DataProc –i CHA4 –o CHA5 –t mdt</Execute>

<Execute waitFor="running" critical="YES">EndItemInteface2 –o CHA4</Execute>

[… project configuration file details removed …]

3.5.6 Time Control

CCTK provides underlying support for countdown and project elapsed time control. For
countdown time control to work properly several resources must be configured. These
resources include:

! A channel must be configured to transmit time control data.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 70

! A DataProc must be configured to process time control data.

! CDTimeControl process must be executed (See CDTimeControl on page 119).

! A time control interface must be defined in the database (see Section 3.4.10.2 for
information on defining a time control interface in the configuration database).

Listing 3-44 provides an example of configuring time control.

Listing 3-44: Sample time control configuration

[… project configuration file details removed …]

<Channel name=”TimeControlData” size=”10000” />

<Execute waitFor="running" critical="YES">DataProc –i TimeControlChan –t mdt</Execute>

<Execute waitFor="running" critical="YES">

CDTimeControl -p CDTime_port -o TimeControlChan -u 1000</Execute>

[… project configuration file details removed …]

Time control is not a required part of CCTK. If the above configuration is omitted, time
control services will not be available.

3.5.7 Multicasting Data

CCTK provides a generic mechanism for multicasting data to clients on the network. See
MulticastServer on page 139. MulticastServer is a legacy application and will be replaced in
the future by PeerSender. If a choice is available, please use PeerSender instead of
MulticastServer.

If multiple CCTK projects are going to simultaneously execute on the same network and
those projects are going to each run an instance of MulticastServer, special care must be taken
to prevent multicast address conflicts. Each MulticastServer must use a different address/port
to transfer data to and from the clients. Multiple MulticastServers cannot be started on the
same system unless different address/port combinations are used. Such an attempt will cause
the second server to fail. If multiple MulticastServers with the same address are started on a
single network on different hosts, no errors will result, but unpredictable results will occur.

The command line arguments –m (for address) and –p (for port) can be used to alter the
multicast address/port combination. If the –m and –p options are not given to MulticastServer,
then the defaults will be used. The default address is 239.1.1.1 and the default port is 7777.

It is also possible to start multiple MulticastServers from within a single project. Listing 3-45
shows an example MulticastServer configuration where one server is configured to use the
default address/port while another is configured to use a different address/port pair.

Listing 3-45: Sample multicast server configuration

[… project configuration file details removed …]

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 71

<Channel name=”TimeControlData” size=”10000” />

<Execute waitFor="running" critical="YES">MulticastServer</Execute>

<Execute waitFor="running" critical="YES">MulticastServer –p 7000 –m 239.1.1.2</Execute>

[… project configuration file details removed …]

Multicast is not a required part of CCTK. The MulticastServer process must be running to
feed data to the CCTK StripChart client. If the above configuration is omitted, multicast and
thus the StripChart client will not work, but the remainder of CCTK will operate properly.

3.5.8 Peer-to-Peer Interface

The CCTK peer-to-peer interface allows for CCTK to send/receive data over a network.
PeerSender transmits data from CCTK to a receiving peer; PeerReceiver receives data into
CCTK from a sending peer. It is possible to configure two or more CCTK projects to transfer
data by connecting a CCTK PeerSender on one project to a CCTK PeerReceiver on another
project. Since the peer to peer protocol is open, it is also possible to write custom senders and
receivers to interface other systems with CCTK. The peer to peer protocol is documented in
the PeerProtocol.h header file found in the CCTK include directory. For more information on
the protocol, see this file or contact CCT for more information.

Both PeerSender and PeerReceiver support multiple modes of operation based upon the type
of socket desired for data exchange. Table 3-48 shows the four primary connection types
supported by PeerSender and PeerReceiver.

Table 3-48: PeerSender/PeerReceiver Modes

Mode Socket
Type

Protocol Notes Example

Point-to-Point /
Registration

Stream TCP Provides a point to point connection
between two systems. Transmission
is guaranteed. Packets can easily be
routed. High latency is possible if
many packets are lost. Two way
communication is permitted with
point-to-point.

Two systems need to exchange data
across a WAN. Data integrity must
be guaranteed, but latency is not an
issue.

Connectionless Datagram UDP Provides a communication path
between two systems. Transmission
is not guaranteed. Packets can
easily be routed. Latency still an
issue but not as significant a factor
as in a point-to-point connection
especially if a dedicated LAN is
used.

Two systems need to exchange data
across a WAN. Data latency is
important, some data can be lost.
Two systems need to exchange data
on a dedicated LAN.

Broadcast Datagram UDP Provides a communication path
between one sender and multiple
receivers. Packets cannot be routed.
Latency is typically not an issue as
data is transmitted on a dedicated
LAN.

A single system will feed identical
data to multiple systems. (i.e. a
display server feeding data to
multiple displays).

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 72

Mode Socket
Type

Protocol Notes Example

Multicast Datagram Multicast Provides a communication path
between one sender and multiple
receivers. Packets can be routed.

A single system will feed identical
data to multiple systems. Systems
are on the Internet. This method is
typically used when large amounts
of data need to be moved to multiple
disjoint systems (streaming
audio/video).

3.5.8.1 PeerSender
PeerSender reads a CCTK channel and transmits the data it receives via a socket. PeerSender
configures the socket based upon information either on the command line or in the
PeerSenderInterface descriptor. If the configuration information is specified in a descriptor,
the descriptor name must be provided to PeerSender on the command using the –P flag. If a
descriptor is specified, it is not permissible to configure the socket via the command line. If
no descriptor is specified, then the socket must be configured via the command line. The
required socket arguments vary depending upon the mode of operation. The PeerSender
manual page, found in Section 8, provides details on the command line options.

If PeerSender is configured with a descriptor, commanding is activated automatically.
PeerSender can be commanded to start and stop data transmission using the appropriate
system commands. By default these commands are called “<name> - Start DT” and “<name>
- Stop DT”, where <name> is the name of the PeerSenderInterface descriptor. These names
can be overridden in the PeerSenderInterface descriptor. PeerSender defaults to data
transmission stopped at startup.

PeerSender receives data to send via a CCTK channel. The channel is a named channel when
operating in point-to-point, connectionless, broadcast, or multicast modes. In these modes, the
channel must be specified on the command line using the –i option and one or more CCTK
processes should be configured to feed data to PeerSender. Registration mode is a unique
mode for PeerSender. When using registration mode, a named input channel may be
specified, but it is optional. The input channel specified on the command line will only be
used for sending and receiving commands. When operating in registration mode, PeerSender
will open the next available channel for data reception each time a new peer connects.
PeerSender expects the receiving peer to send registration requests on which
measurements/notices it wishes to receive. When a registration request is received,
PeerSender will register for that measurement with the CCTK system. At that point, all
changed values for that measurement will be sent to next available channel and then
forwarded on the socket to the receiving peer. This mode provides a way in which multiple
receivers can connect to the CCTK system and request which measurements/notices they
want.

In addition to data packets, PeerSender will also send identification packets across the socket.
An identification packet is used by the receiver to correlate the information in the data packets
with the name of the descriptor on the sending system. Each identification packet is only
sent the first time a sender sees the packet. Therefore, it most situations, it is important
that the receiver be active prior to the sender.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 73

3.5.8.2 PeerReceiver
PeerReceiver reads a socket and transmits the data it receives via a CCTK channel.
PeerReceiver configures the socket based upon information either on the command line or in
the PeerReceiverInterface descriptor. If the configuration information is specified in a
descriptor, the descriptor name must be provided to PeerReceiver on the command using the –
P flag. If a descriptor is specified, it is not permissible to configure the socket via the
command line. If no descriptor is specified, then the socket must be configured via the
command line. The required socket arguments vary depending upon the mode of operation.
The PeerReceiver manual page, found in Section 8 provides details on the command line
options.

If PeerReceiver is configured with a descriptor, commanding is activated automatically.
PeerReceiver can be commanded to start and stop data acquisition and data processing using
the appropriate system commands. By default these commands are called “<name> - Start
DA” and “<name> - Stop DA” for data acquisition and called “<name> - Start DP” and
“<name> - Stop DP” for data processing, where <name> is the name of the
PeerRecieverInterface descriptor. These names can be overridden in the
PeerReceiverInterface descriptor. PeerReceiver defaults to data acquisition and data
transmission stopped at startup.

PeerReceiver sends data to the CCTK over a named output channel. The output channel must
be present on the command line and is specified by the –o argument. A client must be
configured to read the channel. The client must be able to understand the packets being sent to
it via the peer interface. For example, if a PeerSender is reading the output channel of
PktDcom, then the PeerReceiver receiving the data should forward it into a DataProc.
PeerReceiver also has a special translation mode where incoming processed data packets can
be converted to linked data packets. This mode can be used to allow processed data packets
received from a DataProc to be retransmitted through the CCTK system. This translation is
activated using the –p command line argument.

For PeerReceiver to operate correctly, it must be able to translate the names of the incoming
descriptors to names valid on its local system. It can do this in one of two ways. First, if the
names of the descriptors are identical on the two systems, then a direct name translation can
be performed. Second, if the names of the descriptors are different on the two systems, then a
map can be used to map the names on the sender system to valid names on the receiver
system. The map can be configured as described in section 3.4.10.4. For PeerReceiver to have
a map, it must be configured via a PeerReceiverInterface descriptor. By default, PeerReceiver
will attempt to translate the measurement via the map and then via direct name translation.

3.5.8.3 Sample Peer to Peer Configurations
As noted earlier, registration (or server) mode causes PeerServer to operate as a traditional
UNIX server similar to ftp, http, rsh, etc … For PeerServer to operate in registration mode,
the local port must be specified. This is the port that the receiving peers will use to establish a
connection (i.e. http uses port 80). With each new connection, a new instances of PeerServer
will be created to handle the connection. The receiver can register for measurements/notices
that PeerServer will transmit over the socket. Listing 3-46 shows a basic CCTK project
configuration file with PeerServer operating in registration mode.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 74

Listing 3-46: Sample PeerServer registration mode configuration

[… project configuration file details removed …]

<Execute waitFor="running" critical="YES">PeerSender –m registration –L 10000</Execute>

[… project configuration file details removed …]

In this example, two CCTK systems communicate using a connectionless socket. This is
typically used when two CCTK systems that reside on a dedicated network need to share data.
One possible use for this type of configuration is to distribute the processing load across
multiple hosts. In this example, the output of PktDcom on the sending host is forwarded
across the link to be processed by a DataProc on the receiving host. It is assumed that the
database has been properly configured so that the measurements map correctly.
Listing 3-47 shows the project configuration file on the sender. Listing 3-48 shows the project
configuration file on the receiver. In this example, the IP address of the sender is 192.168.1.1
and the IP address of the receiver is 192.168.1.1. EndItemIf is a hypothetical end-item
interface process that feeds packets to PktDcom.

Listing 3-47: Sample PeerServer connectionless mode configuration

[… project configuration file details removed …]

<Execute waitFor="running" critical="YES">PeerSender -i PktDcomOut –m connectionless –r

192.168.1.2 –R 10000</Execute>

<Execute waitFor="running" critical="YES">PktDcom -i PktDcomIn -o PktDcomOut</Execute>

<Execute waitFor=”running” critical=”YES”>EndItemIf –o PktDcomIn</Execute>

[… project configuration file details removed …]

Listing 3-48: Sample PeerReceiver connectionless mode configuration

[… project configuration file details removed …]

<Execute waitFor=”running” critical=”YES”>DataProc –I DataProcIn –t mdt</Execute>

<Execute waitFor="running" critical="YES">PeerReceiver –m connectionless –o DataProcIn –L

10000</Execute>

[… project configuration file details removed …]

In this final example, a PeerReceiver is configured to receive processed data packets via a
broadcast address. Since PeerReceiver is feeding the data into a DataProc, the packets must
be converted to linked data packets. The –p option enables this translation. Listing 3-49 shows
a sample project configuration file.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 75

Listing 3-49: Sample PeerReceiver broadcat mode configuration

[… project configuration file details removed …]

<Execute waitFor=”running” critical=”YES”>DataProc –i DataProcIn –t mdt</Execute>

<Execute waitFor="running" critical="YES">PeerReceiver -p –m broadcast –o DataProcIn –L

10000</Execute>

[… project configuration file details removed …]

3.5.9 External Interfaces

In most cases, it is necessary to run one or more external interfaces to make CCTK useful.
External interfaces typically read data from external hardware and forward it to CCTK.
External interfaces also receive commands from CCTK and alter the state of the hardware to
reflect the command. Several different interface types exist for CCTK. For information on
configuring these interfaces, please see the documentation associated with the proper
interface. In addition, it is possible to add new interfaces to CCTK programmatically. Please
see the CCTK Developer’s Guide for more information on adding custom interfaces.

3.6 Creating a CCTK Project
This section unifies the previous discussions on project directory, project configuration,
configuration database, and configuration of system tasks into a single discussion on how to
create a working CCTK project. This section presents, in simple terms, those resources that
are required and those resources that are optional when creating a CCTK project.

As discussed previously, each CCTK project is contained within a single directory, the project
directory. The project directory can reside anywhere on the local file system of the CCTK
server. It is created using standard UNIX commands. Permissions on the project directory
should be set appropriately. See Section 3.1 for more information on the project directory.

Within the project directory, two files must be created:

! Project configuration file (see Section 3.2 for more details).

! Configuration database file (see Section 3.4 for more details).

Optionally, the following files may be created:

! Additional configuration database files.

! Archive configuration file (see Section 3.3 for more details).

! Other files as required by specific CCTK processes.

Listing 3-50 shows a minimal project configuration file.

Listing 3-50: Simple project configuration file

<?xml version="1.0"?>

<!DOCTYPE ProjectConfiguration SYSTEM "project_config.dtd">

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 76

<ProjectConfiguration project_name="Simple Project">

 <StartUp defaultMode="simple">

 <Mode name="simple">

 <ConfigDb file="simple_config_db.xml" />

 <StatusTable entries="20"/>

 <Channel name="STDMSG" size="40000" />

 <Channel name="STDRESP" size="40000" />

 <Channel name="STDDIST" size="40000" />

 <Channel name="STDSTATUS" size="40000" />

 <Channel name="STDARCH" size="40000" />

 <Execute waitFor="running" critical="YES">Message</Execute>

 <Execute waitFor="running" critical="YES">DataProc -i STDRESP -t

mdt</Execute>

 <Execute waitFor="running" critical="YES">DataProc -i STDRESP -t

mdt</Execute>

 <Execute waitFor="running" critical="YES">TamArs</Execute>

 <Execute waitFor="running" critical="YES">ArchiveControl</Execute>

 </Mode>

 </StartUp>

</ProjectConfiguration>

Within this project configuration file, the following required resources must be defined:

! Project name.

! A single mode.

! Status table entries.

! Minimum set of CCTK channels (STDARCH, STDRESP, STDSTATUS, and
STDMSG).

! A single configuration database file.

! Only those processes that are necessary to run a simple CCTK system, including
Message, a DataProc reading STDRESP, a DataProc reading STDSTATUS, and archive
processes.

Listing 3-51 shows a minimum configuration database file.

Listing 3-51: Simple configuration database

<?xml version="1.0"?>

<!DOCTYPE ConfigurationDatabase SYSTEM "xcdb_config.dtd" [

 <!ENTITY SystemNotices SYSTEM "SysNotice.xml">

]>

<ConfigurationDatabase>

 <Table name="ndt" />

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 77

 <Table name="mdt" />

 <Table name="cdt" />

 <Table name="ldt" />

 <Table name="pdt" />

 <Table name="bdt" />

 &SystemNotices;

 <ArsInterface name="ARS_port_descriptor">

 <ArsStartCommand name="Start_ARS" />

 <ArsStopCommand name="Stop_ARS" />

 <ArsCloseArchiveCommand name="ARS_Close_Archive" />

 <ArsStatusMeasurement name="ARS_Status" table="mdt"/>

 </ArsInterface>

</ConfigurationDatabase>

Within this configuration database file, the following required resources must be defined:

! Core CCTK tables.

! Included system notices.

! ARS Interface.

The project configured above is not very useful in and of itself, but it does provide a starting
point for future projects and shows the minimal amount of configuration necessary for a
running CCTK system.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 78

4 PROJECT EXECUTION

This section discusses a variety of topics related to project execution. Project execution
includes all activities that occur between and including CCTK startup and shutdown. The
following essential items will be examined:

! Startup and Shutdown: This section discusses ProjectManager, the back-end process
called by CctkClient starts up and shuts down a project. Basic project startup and
shutdown using CctkClient is discussed in the CCTK User’s Manual.

! Starting and Stopping Applications: It is possible to start and stop certain applications
while the project is executing. This section discusses the pros and cons of performing
these actions.

! Project Directory: This section discusses the files and directories created in the project
directory during project execution.

! Health and Status: This section shows how health and status is calculated as well as how
to obtain the current health and status of the system and individual applications within
the system.

! Utility Applications: CCTK has several utility applications that can be run during project
execution. These utilities are very useful when debugging problems. This section
introduces these utilities.

4.1 Starting and Stopping a Project
ProjectManager is a command line application used to start and stop a project.
ProjectManager has many command line options that control its behavior. The following
subsections discuss the different options passed to ProjectManager and how they can be used
to control project startup and shutdown.

CctkClient provides a simple to use (although less powerful) graphical front-end to
ProjectManager. The CCTK User’s Manual describes how to use the CctkClient program to
start and stop a project.

4.1.1 Using ProjectManager to Start a Project

Executing ProjectManager from the command line will start a CCTK project. If no arguments
are passed to ProjectManager, then it will attempt to derive all of the necessary information
needed to start CCTK.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 79

% ProjectManager

Initializing the CCTK system...

[… output dependent upon project configuration …]

Creating Status Table...

[… status table output dependent upon project configuration …]

Creating Environment Variables...

[… environment variable output dependent upon project configuration …]

Creating Channels...

[… channel output dependent upon project configuration …]

Creating Message Queues...

[… message queue output dependent upon project configuration …]

Building Real-time Tables...

[… real-time table output dependent upon project configuration …]

Executing Processes...

[… process execution output dependent upon project configuration …]

%

A particular project mode can be specified using the ‘-m’ option:

% ProjectManager –m requested_mode

[… output similar to previous example …]

%

In both of the above situations, KPATH must not be set and the project configuration file must
be named the default name of project_config.pcml. In this situation, ProjectManager will
deduce that the current directory is to be the project directory and that the configuration file to
use is project_config.pcml.
ProjectManager uses the following rules to determine the project directory and configuration
file:

! If -k is specified on the command line, it is used.

! If -k is not specified, but the KPATH environment variable exists and is valid, it is used.

! If neither -k nor the KPATH environment variables are specified, ProjectManager will
attempt to deduce the project directory.

− If a configuration file (other than the default) is specified on the command line
with the -f option, ProjectManager will assume that the project directory is the
directory where the configuration file resides.

− If no configuration file is specified on the command line, then ProjectManager
will assume that the current directory is the project directory and attempt to use it.

For example, if the following command is executed:

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 80

% ProjectManager -k /some/valid/directory

[… output similar to previous example …]

%

Then ProjectManager will use the given directory as the project directory. If the KPATH
environment variable is set, as in the following example:

% echo $KPATH

/some/valid/directory

% ProjectManager

[… output similar to previous example …]

%

Then ProjectManager will use the directory defined by KPATH as the project directory. As
discussed above, if no arguments are given:

% ProjectManager

[… output similar to previous example …]

%

Then ProjectManager will assume that the current directory is the project directory and act
appropriately.

Once ProjectManager deduces a project directory, it checks to ensure that the directory exists
and that the user has execute and write permissions to the directory. If the user does not have
the appropriate permissions, ProjectManager will fail. ProjectManager will also verify that
the configuration file project_config.pcml (unless specified differently with the -f command
line option) exists and is readable by the user. If ProjectManager cannot find an appropriate
configuration file or if the user cannot read it, ProjectManager will fail.

ProjectManager will only attempt to perform a startup if the project is in a down state. Valid
down states include “DOWN”, “FORCED_DOWN”, and “STARTUP_FAILED”. If the
project is not in a down state, ProjectManager will fail to successfully start the system. If the
project is not in a down state and will not shutdown correctly, Section 4.1.3 provides
information on cleaning up project resources and resetting the system state.

Table 4-1 lists ProjectManager command line options for project startup.

Table 4-1: ProjectManager startup options

Option Description
-u Bring the project up (this is the default and thus not necessary).
-f config_file Use config_file as the project configuration file.
-k kpath Use kpath as the project configuration directory.
-m mode Bring up the project in the specified mode. The mode should exist in the project

configuration file.
-n user_notes Enter the user_notes into the state history file.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 81

Option Description
-q Only display error messages when starting the project, informational messages

will be surpressed. This option is exclusive with the –v option.
-v Produce verbose output when starting the project. This option is exclusive with

the –q option. This is the default.
-c Clean up the log directory and tmp directory before starting the project.
-h List the full set of options on the command line with a short help message on

each option.

See ProjectManager on page 163.

4.1.2 Using ProjectManager to Stop a Project

A project is stopped or shutdown by sending the UNIX TERM signal to the ProjectManager
which started the project. If the user has only one project running on the system or wishes to
terminate all projects he/she is running on the a system, the following UNIX command can be
used:

% killall –TERM ProjectManager

%

If only one project needs to be shutdown, then the PID of the associated ProjectManager
must be determined. This is determined by examining the PROC directory in the project’s
temporary directory. Within the PROC directory, an entry for ProjectManager should exist
and the id should be part of the name. The TERM signal can then be sent to the appropriate
process using the UNIX kill command. This process is automated using ProjectManager.

% ProjectManager –d -D

Shutting down the CCTK system...

[… shutdown information specific to the particular project …]

%

The above command will cause ProjectManager to look for a running ProjectManager and
attempt to terminate it. For the above command to work, ProjectManager must be able to
determine the project directory. The same rules described in Section 4.1.2 apply. In addition,
the –D option instructs ProjectManager to terminate all applications associated with this
project, not just the ones it started. Other options are listed in Table 4-2.

As with system startup, ProjectManager will check the state before performing a shutdown. If
the state is not “UP”, the shutdown will fail. At times, it may be necessary to force a project
down regardless of state. Adding the –i option to ProjectManager will force a project down.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 82

Table 4-2: ProjectManager shutdown options

Option Description
-d Bring the project down
-f config_file Use config_file as the project configuration file.
-k kpath Use kpath as the project configuration directory.
-n user_notes Enter the user_notes into the state history file.
-D Send the terminate signal to all processes associated with the project,

not just those started by ProjectManager.
-i Force a shutdown regardless of state.
-q Only display error messages when starting the project, informational

messages will be surpressed. This option is exclusive with the –v
option.

-v Produce verbose output when starting the project. This option is
exclusive with the –q option. This is the default.

-c Clean up the log directory and tmp directory before starting the project.
-h List the full set of options on the command line with a short help

message on each option.

4.1.3 Cleaning Up Project Resources

If problems occur during project execution or termination, it is possible that the CCTK project
is in an unusable state. If, for example, the temporary directory is deleted while the project is
running, ProjectManager may not be able to cleanup the resources associated with a project.

When a project does not shutdown properly, processes, shared resources, or both remain
active on the system. These processes and/or shared resources must be cleaned up before the
project can successfully execute again. The UNIX ps command and ipcs command can be
used to view processes and shared resources on the system. If you are unfamiliar with these
commands, reference the UNIX documentation that came with your system.

The following steps should clean up all resources associated with the project and allow it to
execute again. Be sure that you have changed to the project directory and that KPATH is set
before executing these steps.

First, attempt to stop the project using the normal shutdown command.

% ProjectManager -dD

If that does not work, attempt to force the project down using the force option of shutdown.

% ProjectManager -dDi

If a project is still up, use ps to list all of the processes belonging to the user that started the
project. Look for the core CCTK processes (such as DataProc, ProjectManager, Message,
etc.) and note their PID’s. Using the UNIX kill -9 command to destroy these processes. If the
same user has multiple projects active, be certain to terminate only the processes associated

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 83

with the problem project. After cleaning up the processes, use the ipcs command to view the
shared resources belonging to this user. Use the ipcrm command to remove shared resources
associated with this user. Again, if the same user has multiple projects active, be careful to
terminate only the resources associated with the problem project.

Once the processes and shared resources are cleaned up, remove the temporary directory
using the appropriate UNIX command.

Rerun the last ProjectManager command described above to ensure that the system is placed
in a down state.

If, after following the above steps, the CCTK project will still not start up, please contact CCT
for support.

4.2 Starting and Stopping Applications
Several programs are provided as part of CCTK. These programs, sometimes referred to as
“system applications” or “graphical user interfaces,” are general-purpose tools available to all
users for performing common tasks. The names of the executable programs associated with
these CCTK applications are listed in Table 4-3 below. You can also create custom
applications using the optional CCTK development environment.

Table 4-3: System applications available during project execution

Name Executable Description
CCTK Client CctkClient Top-level interface to CCTK. Allows the user to select a project, start and

stop a project, view displays, and launch applications.
Measurement Monitor MeasMon Allows the user to view the current value of measurements in the system.

Also allows the user to view properties of the measurement such as
status, units, and last processed time.

Retriever Retriever Allows the user to retrieve historic information from a project’s archive.
Measurements, commands, and messages can be retrieved.

System Message SysMsgGui Allows the user to view the system messages associated with a project.
Time Control N/A Allows the user to monitor and control CDT, including scheduling CDT

start and stop events based on time.
Simulator SimGUI Allows the user to create and edit CCTL simulation scripts, and control

the simulation during project execution.

After a CCTK project has been started, it is common to start one or more applications
(including their graphical displays) which communicate with the CCTK project. To start a
CCTK application (user or system), the KPATH environment variable must be set to the
project directory and the user must have permission to communicate with the project.
Applications and displays are typically started from the command line or via an automated
remote login from a client (see Section 4.3 for more information on this method). It is also
common to start applications from the CctkClient display tree. In this case, CctkClient sets
KPATH based upon the opened project. See Section 3.2.3.2 for information on adding
applications to the CctkClient display tree.

4.3 Connecting to the Server From a Client
When operating CCTK in the client/server environment, it is necessary to execute
applications remotely on the server and display the applications on the local client display.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 84

The features of X Window allow applications running on the CCTK server to be displayed on
the local client display. In order for X Window to operate properly, the DISPLAY
environment variable must be set to the correct host before starting the X Window
application. Reference the X Window documentation for more information.

Remote execution can be accomplished using several different methods, but the most
common method is to use the UNIX remote execution utilities (rsh and/or rexec). Please see
the UNIX documentation for configuring and using these utilities.

If Windows clients are being used with the Exceed X Window package, excellent
documentation is available from Exceed on performing the above tasks.

4.4 Project Directory
Section 3.1 introduces the project directory. It discusses the basics of the project directory and
describes the configuration files that reside in the project directory. In addition to these
configuration files, a significant number of files and directories are created during project
execution. This section discusses the files and directories generated in the project directory
during project execution.

The following files/directories are created during project execution. Each of these is described
in the following sections.

! Log Directory

! Temporary Directory

! Lists Directory

! PROC/KSHM/KMSG Directories

! System State File

4.4.1 Log Directory

The log directory ($KPATH/log) contains log files for all CCTK processes. The log directory
is created upon project startup if it does not already exist. All CCTK processes create a log
file in the log directory in which they write a variety of information including system
messages, health and status, and occasionally debug output. These log files remain until
deleted, either manually or through the use of ProjectManager’s –c option.

The format of the log file names is:

<process name>.<UNIX PID>

Where process name is the internal name of the process, this is typically the same name as the
executable, and UNIX PID is the UNIX process identifier.

If problems are encountered during CCTK operation, scanning the log files is one of the first
troubleshooting steps. Most problems encountered during system execution are logged to the
log files.

In addition to the process log files, a listing of the system notices processed by the system is
stored in the log directory. ${KPATH}/log/system_messages.d contains all of the system

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 85

notices received by the system since it started. This text file is used by the system message
GUI. It can also be viewed from the command line for a quick look at the system notices.

4.4.2 Temporary Directory

The temporary directory (${KPATH}/tmp) is created upon project execution if it does not
already exist. The temporary directory contains temporary files directly related to the
execution of the current project. Files within this directory typically have no relevance after
the project stops. The temporary directory will be automatically cleared when the next project
starts. Many different CCTK processes create files in the temporary directory. The temporary
directory can be safely removed as long as the project is in the down state. The next few
sections describe some of the files found in the project’s temporary directory.

4.4.3 Lists Directory

One of the items in the temporary directory is the lists directory (${KPATH}/tmp/lists). The
lists directory contains lists of function designators (FD’s) for an active CCTK project.
During database creation, lists are created for a variety of different descriptor types. All of
these lists are present in this directory. The lists are used by a variety of CCTK processes for
many different purposes. Manually viewing the lists is an excellent way to determine if an FD
configured in the database was correctly created in the system. Table 4-4 shows all of the
possible lists created by the CCTK database.

Table 4-4: CCTK database generated lists

FD Type Filename
Analog Measurements analog.list
Bus Descriptors bus.list
Byte Array Measurements bytearray.list
Commands command.list
Command Responses commandresponse.list
All Descriptors descriptor.list
Discrete Measurements discrete.list
Measurements measurement.list
Notice Descriptors notice.list
Port Descriptors port.list
String Measurements string.list
System Commands systemcommand.list
Unsigned Integer Measurements unsignedint.list

4.4.4 PROC/KSHM/KMSG Directories

The PROC, KSHM, and KMSG directories also reside in the tmp directory. These three
directories all provide information on resources used by the CCTK project. They are only

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 86

valid during project execution. The directories are not typically accessed during normal
CCTK administration, but they must be present for the system to operate properly.

The PROC (${KPATH}/tmp/PROC) directory contains a single entry for each process
attached to CCTK. Whenever a new process is started, it automatically adds an entry to the
PROC directory. When the process is stopped, it automatically removes itself from the PROC
directory. This directory can be used to associate running processes with a project. The entries
in the PROC directory are formatted as <process name>.<pid>.

The KSHM (${KPATH}/tmp/KSHM) directory stores information on the shared memory
segments created for the CCTK project. The name of the each file in the KSHM directory
equates to the name of the shared memory segment. The file contains the shared memory key
associated with the segment. Using this key, it is possible to associate the shared memory
segments listed by the UNIX ipcs command with those used by a CCTK project.

The KMSG (${KPATH}/tmp/KMSG) directory stores information on the message queues
created for the CCTK project. The description for the KSHM directory applies to the KMSG
directory as well.

4.4.5 System State File

The system state file (${KPATH}/system_state.xml) resides in the project directory. It is an
XML file that holds information on the state of CCTK. It is updated primarily by
ProjectManager and read by a variety of different system applications. The system state file is
a persistent file and will remain in the project directory even when the project is down. If the
system state file is not present, it will be automatically created. This file can be safely
removed as long as the project is down, but removing the file will erase all state history
information.

The system state file contains the following information:

! Current state of the system

! Current state information

! Historical system state information

The contents of the system state file is used by CctkClient to provide much of the system
information seen on its display. The state history widget obtains all of its historic information
from this file. The state history widget also allows a user to prune and clear the state history.
The SystemState utility application is a command line utility for viewing and modifying
system state. The SystemState utility is described on page 161. The SetSystemState utility can
be used to modify the system state file while the system is down. It is described on page 155.
ClearSystemStateOnBoot is an additional utility provided to manage the system state. If you
execute this script on boot up with the appropriate arguments, it will ensure that the specified
projects are in the down state. This is useful for turn-key systems where you need to ensure
that the projects are in a state that can be started when the system boots after a power outage
or crash. ClearSystemStateOnBoot is described on page 130.

Since the system state file is an XML file, it is described by a DTD which is located in
${CCT_HOME}/include/dtd/system_state.dtd.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 87

4.5 Health and Status
CCTK has an integrated health and status system that continually monitors all processes
associated with a CCTK project. The health of the CCTK project will be derived anytime the
system is in the UP state. Two primary conditions cause a project’s health to change:

! A process is unresponsive or exits improperly.

! A process alters its individual health status to cautionary or critical.

Each process in the CCTK maintains a health count. The process is responsible for
incrementing the health count once a second. In addition, each process may optionally post its
internal health. ProjectManager monitors the health counts and internal health of all processes
in the system. If a health count stops incrementing, ProjectManager will change the health of
the system to reflect the problem. If the health of an individual process alters from the healthy
state, then ProjectManager will alter the health of the overall system to reflect this change.

The overall health of the system is displayed in the CctkClient status bar. A curses based
utility called StatMon is available. StatMon shows the individual health, state, health counts,
and other information for each process attached to the CCTK project. Section 4.6.2 provides
instructions for executing StatMon.

4.6 Utility Applications
CCTK has several command line utility applications for interacting with the system. The
following sections describe several of these utilities.

4.6.1 Channel Monitoring

CCTK uses a shared memory based IPC mechanism called channels to move blocks of data
between processes. Correct operation of channels is an important aspect to a properly running
CCTK system. ChanMan is a simple curses based utility that allows monitoring of channel
statistics.

A project must be up and running and the KPATH must be set before executing ChanMan.
ChanMan can be executed from the UNIX command prompt:

% ChanMan

To obtain a listing of the keystrokes used to navigate in ChanMan, press the ‘h’ key. To make
the help screen go away, press the space bar. Figure 4-1 displays the channel rates ChanMan
screen. This is the initial screen you will see after running ChanMan.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 88

Figure 4-1: ChanMan channel rates page

The channel rates screen gives an overview of all channels in the system. The channels 1-32
are listed on the first page. Channels 33-64 are listed on the second page and can be accessed
by pressing the ‘l’ (lower case L, not one) key. The channel rates screen shows the
packets/sec and bytes/sec for each channel and for the total system throughput. When
examining this screen, here are several points to remember:

! If data is being archived (as is the case in most systems), STDARCH should have some
data flowing through it.

! STDMSG is a low rate channel. If more than several packets a second flow through
STDMSG, a process is repeatedly reporting an error; check the log files.

! Named channels that pass data between interface processes and data processing processes
should have data flowing if the interface is active.

! STDARCH’s data rate should approximately be the sum of all channels feeding
DataProc.

Pressing the ‘j’ and ‘k’ will show the channel details page. Figure 4-2 shows the channel
details page for the STDARCH channel.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 89

Figure 4-2: ChanMan channel details page

The channel details page provides significant information about an individual channel. The
following key points should be remembered when examining this page:

! For a channel to transmit data, one client and at least one server must have the channel
open. The state of the server and client are shown in the upper right of the screen.

! When a serious problem occurs in the system, data sometimes stop flowing between
processes. This problem is characterized by packets/sec and byte/sec values of zero.
Diagnose this problem by examining the free bytes field on the center portion of the left
side of the screen:

− If the value of free bytes is zero or near zero, then the client is not reading data
from the channel.

− If the value of free bytes is equal to the CDB size value (just above it), then the
server is not writing data to the channel.

! When a channel is working properly, but inactive, you will typically see the client
blockables and blocks field increase.

! If a lot of data is flowing through a channel, it is possible for the writer to send data faster
than the reader can process it. This is typically characterized by a large number of
blockables and blocks for the server.

! Finally, the total number of bytes processed by the channel is available for viewing.

To exit ChanMan, use the ‘x’ key.

4.6.2 Process Status Monitoring

StatMon is a curses based utility that allows monitoring of both project and process health. A
project must be up and running and the KPATH must be set before executing StatMon.
StatMon can be executed from the UNIX command prompt:

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 90

% StatMon

To obtain a listing of the keystrokes used to navigate in StatMon, press the ‘h’ key. To make
the help screen go away, press the space bar. Figure 4-3 displays a sample StatMon screen.

Figure 4-3: Sample StatMon page

When viewing the status page, keep the following points in mind:

! If the process ID field is –1, then the descriptor is unused.

! Current count and previous count should be within one or two counts of one another.
They should also increment at a rate of approximately once per second.

! Under normal circumstances, kernel state, process state, and project health should be
identical to the above. Process health will be either “NOT APPLICABLE” or
“HEALTHY”. When a process’s health is “NOT APPLICABLE”, it does not provide
health information to the system.

To exit StatMon, use the ‘x’ key.

4.6.3 Archive Monitoring

ArsMon is a curses based utility that allows monitoring of the archive subsystem. A project
must be up and running and the KPATH must be set before executing ArsMon. ArsMon can be
executed from the UNIX command prompt:

% ArsMon

To exit ArsMon, use the ‘x’ key. Figure 4-4 displays a sample ArsMon screen.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 91

Figure 4-4: Sample ArsMon screenshot

4.6.4 Command Line Retrievals

Several utilities exist to perform retrievals from the command line within CCTK. To perform
retrievals using a graphical interface, reference the Retriever section in the CCTK User’s
Manual. Like the other command line utilities discussed thus far, a project must be up and
running and the KPATH must be set before executing these utilities.

NrtRetrieve is the back-end process that performs retrievals during project execution. Both
SimpleNrt and Retriever use NrtRetrieve to perform retrievals. NrtRetrieve accepts a retrieval
parameter file as input. This special file is based upon the Tcl script language and describes
the retrieval to be performed. See NrtRetrieve on page 142.

To perform a retrieval using NrtRetrieve from the command line, use the following command
template:

% NrtRetrieve [-o output_file] [-b start_time] [-e end_time] [-t timeout] \

parameter_file [parameter file …]

The simplest way to generate a parameter file is to use Retriever. The saved file output of
Retriever is a parameter file. It is also possible to generate a retrieval parameter file by hand,
but it is not recommended.

Using NrtRetrieve and a retrieval parameter file gives the administrator full control over the
retrieval. However, SimpleNrt can be used in some circumstances. SimpleNrt allows retrievals
of FD’s, but does not allow any filtering to be performed on the FD’s. To perform a retrieval
using SimpleNrt, use the following command template:

% SimpleNrt [-b start_time] [-e end_time] -o output_file fd [fd ...]

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 92

For more information on NrtRetrieve or SimpleNrt, see the manual pages in Section 8.

4.6.5 Batch Retrievals

NrtRetrieve, as described above, is capable of performing batch retrievals. Simply pass
multiple retrieval parameter files to NrtRetrieve on the command line and it will perform each
retrieval in turn. As discussed above, the simplest way to generate a retrieval parameter file is
to use Retriever.

4.6.6 Grace Scripts

CCTK uses an application called Grace to support plotting of retrieved data. Information on
Grace can be found at the Grace website (http://plasma-gate.weizmann.ac.il/Grace/). Grace is
a flexible tool that can easily be interfaced with the system in a variety of ways. CCTK
provides two scripts RetGraceGenPlot and RetGraceParseFd in order to facilitate integration
with Grace. RetGraceGenPlot, a Tcl script, will execute Grace with the appropriate command
line options to display a graph for a given delimited retrieval file. The manual page for
RetGraceGenPlot can be found on page 152. RetGraceParseFd will parse a given FD from a
given delimited retrieval file and send the data to standard output data. It can then be ingested
directly into Grace using the pipe command line option. The manual page for
RetGraceParseFd is on page 153. Using these scripts as an example, it is possible to create
custom plots by configuring the command line options and configuration file options provided
by Grace.

4.6.7 CCTKsh

CCTKsh is a scripting interface to CCTK based upon the Tcl scripting language. This section
discusses the additions to Tcl that allow it to interact with CCTK, but does not discuss the Tcl
scripting language. If you are unfamiliar with the Tcl scripting language, it would be
beneficial to familiarize yourself with the language before reading this section.

To execute CCTKsh, simply type CCTKsh at the command prompt:

% CCTKsh

%

It is also possible to load the CCTK extensions to Tcl using the require command:

% CCTKsh

% package require cctk

0.1

%

http://plasma-gate.weizmann.ac.il/Grace/

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 93

As with the other system utilities, a project must be up and running and the KPATH must be
set before executing CCTKsh.

As an example, it is possible to obtain the current value of a measurement using the
::cctk::GetMeasValue command. The following shows how to use this command to obtain the
current value of the FD “Test Analog #1”:

% CCTKsh

% package require cctk

0.1

% ::cctk::GetMeasValue “Test Analog #1”

0.0

%

By the same token, it is easy to issue a CCTK command using the ::cctk::IssueCmd Tcl
command. The following shows how to use this Tcl command to issue the CCTK command:

% CCTKsh

% package require cctk

0.1

% ::cctk::IssueCmd “Start_CDTime”

nak

%

In the above case, the command was not acknowledged (probably because no countdown time
was set and thus, it was not possible to start it).

There are several Tcl commands that interface with the CCTK system.

Table 4-5 lists the valid CCTKsh commands and the arguments they accept.

Table 4-5: CCTKsh command descriptions

Command Description
::cctk::GetMeasList Returns the list of valid measurements for the project.
::cctk::GetMsgList Returns the list of valid system messages for the project.
::cctk::GetCmdList Returns the list of valid command for the project.
::cctk::GetDistVector [-raw] <fd> Returns the distribution vector associated with the fd.
::cctk::GetMeasValue <fd> Returns the current value of a measurement.
::cctk::SetMeasValue <fd> <new value> Attempts to set the current value of a measurement.
::cctk::IssueCmd <fd> Issues a command.
::cctk::IssueValue <fd> <parameter value> Issues a command that has a single parameter.
::cctk::GetFdInfo <fd> [property] Returns information about a particular property of a descriptor.
::cctk::SetFdInfo <fd> <property> <new value> Sets a particular property of a descriptor.
::cctk::GetHealth Returns the current health of the CCTK system.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 94

After running CCTKsh, these commands can be typed at the prompt as shown above and the
results will be displayed at the terminal. Many of the above commands make excellent
debugging tools when troubleshooting the system.

It is also possible to create complex scripts using Tcl, Tk, and the CCTK extensions to the
language. Table 4-6 lists several examples of Tcl scripts that are available for reference, their
location, and a short description of each.

Table 4-6: Tcl scripts

Script Name Location Description

measurement_update.tcl ${CCT_HOME}/projects/SIMPLE/bin
Updates the description and units of an
analog measurement in real-time while
the system is running. Uses the
::cctk::SetFdInfo Tcl command.

simple_archive.tcl ${CCT_HOME}/projects/SIMPLE/bin
Reads the current value, description, and
units of a measurement and writes the
data to a file. Uses the ::cctk::GetFdInfo
and ::cctk::GetMeasValue Tcl commands.

IgniterSafing.tcl ${CCT_HOME}/projects/SuperLokiDemo/bin

Issues a series of commands to open all
of the firing circuits in the
SuperLokiDemo. This script is executed
when the emergency safing button is
pressed on the firing circuit displays. It
uses the ::cctk:IssueCmd Tcl command.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 95

5 POST PROJECT EXECUTION

This section discusses tasks that can be performed after a project has been terminated. At this
time, there are two primary tasks:

! Post Project Administration

! Historic Retrievals

These topics are covered in the following sections.

5.1 Post Project Administration
After a project is shutdown, there are a few simple tasks to perform. These tasks include:

! Permanent storage of project related files

! Clean-up of the project directory

Once a project is shutdown, it may be necessary to arrange for permanent storage of certain
project related files. If a historical record of the project is needed, CCT suggests that the
project directory be copied to a permanent storage location. By copying the project directory,
a record of the project configuration, the configuration database, the project log files, the
archive files, and the temporary files are all saved. These files are invaluable for future
analysis of the project. CCT recommends that each project administrator develop a plan for
storing project files. At a minimum, the archive files must be stored if historic retrievals need
to be performed on the project in the future.

After the appropriate files have been copied to the permanent storage solution, the project
directory may be cleaned up. This step is not absolutely necessary as at the start of the next
project, all dynamic resources will automatically be removed and recreated. However, if it
becomes necessary to manually clean the project directory, the following files may safely be
deleted:

! ${KPATH}/tmp: The project temporary directory

! ${KPATH}/TAM*: The project archive files

5.2 Historic Retrievals
To perform historic retrievals for a past project, the archive files associated with the project
must be accessible. Storage of historic archive files is site dependent, as discussed in Section
5.1. Once the correct archive files have been located, it is simple to perform historic retrievals.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 96

Historic retrievals work in a similar manner to near real-time retrievals discussed in Section
4.6.4. Graphical retrievals can be performed using Retriever. Reference the CCTK User’s
Manual for information on using Retriever to perform historic retrievals. Historic command
line retrievals can be performed using the applications HistRetrieve or SimpleHist.
HistRetrieve is analogous to NrtRetrieve. HistRetrieve is the back-end process that performs
retrievals during project execution. Both SimpleHist and Retriever use HistRetrieve to
perform historic retrievals. HistRetrieve accepts a retrieval parameter file as input. This
special file is based upon the Tcl script language and describes the retrieval to be performed.
For information on the contents of a retrieval parameter file, see HistRetrieve on page 135.

To perform a historic retrieval using HistRetrieve from the command line, use the following
command template:

% HistRetrieve [-o output_file] [-b start_time] [-e end_time] [-p path] \

[-f filebase] [-s[s]] parameter_file [parameter file …]

HistRetrieve adds two important options (–p and –f) over NrtRetrieve. –p indicates the path
where the historic archive files are located. If –p is not specified, then it defaults to the current
working directory. –f indicates the base filename of the archive files. –f defaults to TAM if it
is not specified.

The simplest way to generate a parameter file is to use Retriever. The saved file output of
Retriever is a parameter file. It is also possible to generate a retrieval parameter file by hand,
but it is not recommended.

Using HistRetrieve and a retrieval parameter file gives the administrator full control over the
retrieval. However, SimpleHist, which is analogous to SimpleNrt, can be used in some
circumstances. SimpleHist allows retrievals of FD’s, but does not allow any filtering to be
performed on the FD’s. To perform a retrieval using SimpleHist, use the following command
template:

% SimpleHist [-l path] [-f filebase] [-b start_time] \

[-e end_time] -o output_file fd [fd ...]

Again, note the differences between SimpleHist and SimpleNrt. Both options –l, to specify the
path, and –f, to specify the filename base, are present.

For more information on HistRetrieve or SimpleHist, see the manual pages in Section 8.

As with NrtRetrieve, HistRetrieve is capable of performing batch historic retrievals by placing
multiple parameter files on the command line. By using the Grace scripts described in Section
4.6.6 as a start point, it is possible to create scripts that generate a series of plots from a
historic archive file. Please contact CCT for further assistance with historic batch and historic
batch plot retrievals.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 97

6 SIMUL ATION

The CCTK simulation environment provides a generic tool for test and debug of system
applications and configurations. It is also useful in creating training scenarios and test
simulations necessary for operational readiness.

The simulator is accessed directly from the CCTK command line and supports three modes of
operation:

! dsim: Debug simulator, outputs to a file or standard out

! gsim: GLG simulator, outputs to a GLG display

! csim: CCTK simulator, interacts with CCTK

This section discusses the general use of the three different simulators and the simulation
language in general.

6.1 Running the Debug Simulator
The debug simulator can be run in two different modes: interactive or script driven. The
simulator will act similar to your shell in a manner that you can interactively enter commands
at a prompt or you can feed it a script file to process. To start the debug version of the
simulator, simply type the following:

% dsim

You should be greeted with the simulator prompt:

sim>

Type the following command:

sim> Sim_Run

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 98

The Sim_Run command will cause the simulator to enter its processing loop. The simulator
operates on a fixed cycle loop that defaults to 1 Hz. You should see the following repeated
over and over until it is stopped by sending an interrupt signal. This can be done with the
UNIX kill signal, but <Ctnl-c> at the terminal will do the same task. Sim_Run will output the
following:

Update Cycle Started ...

Check For Commands Called...

Update Cycle Finished ...

Update Cycle Started ...

Check For Commands Called...

Update Cycle Finished ...

In this case, the debug output module prints a statement each time the simulator update cycle
starts, commands are checked for, and the update cycle finishes. In addition, after commands
are processed, the simulator processes events, and updates measurements. The simulator
internally implements event and measurement processing while command processing is
deferred to the external I/F module. It is important to understand the ordering of steps in the
update loop:

! Update Cycle Started: Allows the external I/F module to perform processing prior to any
other activities for this update cycle.

! Check for Commands: Allows the external I/F module to check for any outstanding
commands and notify the simulator of those commands.

! Process Events: The simulator will internally process events and performs the actions
necessary to satisfy the event.

! Process Measurements: The simulator will update each measurement based upon its
algorithm. The external I/F module will be notified if any item changes.

! Update Cycle Ended: Allows the external I/F module to perform processing at the end of
the update cycle. As an example, the glg module uses this to sync the remote screen.

! Sleep: Sleep till the start of the next update cycle.

! Update Cycle Finished: Defers to external I/F module for processing.

6.2 Running The GLG Simulator
The GLG option allows a client/server implementation where data can be fed to a GLG
display via a remote application. The simulator uses this feature of GLG to provide simulation
to GLG displays. For the GLG simulator to work, the following properties must be set in the
viewport of the GLG object:

! ServerEnabled

! ServerName

Please see the GLG documentation for more information on these resources. The GLGbuilder
viewport is a server with the name <GlgDrawingAreaServer> so it is possible to use the

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 99

simulator to simulate data into the GLGbuilder. Once the "ServerName" is known, the GLG
simulator can be started with the following command:

% gsim -s <server_name> [script_name]

You must specify the <server_name> on the command line. Just like with the debug simulator
however, the script_name is optional. In fact, all of the simulator commands that work in
debug will work with the GLG simulator. To manipulate GLG data from the simulator, name
the simulator measurement the same as the GLG resource name.

6.3 CCTK Simulation
The CCTK version of the simulator is called csim. The csim simulator accepts the command
line arguments shown in Table 6-1.

Table 6-1: csim command line argument descriptions

Argument Description

<-o output_channel> A required argument that specifies a CCTK channel name. All linked data packets will be
written to this channel. Only one may be specified.

[-i input_channel] An optional argument that specifies a CCTK channel name. Multiple input channels may
be specified. Commands will be read from each channel once per cycle.

[-p port_fd] An optional argument that specifies a CCTK port fd. None are required but multiple may
be specified. The input channel will be registered with each port.

[-k kpath] An optional argument that specifies the kpath. If kpath is omitted, then the KPATH
environment variable must be set.

[script_file ...] Used to specify a set of script files to process. If no file is specified, an interactive shell
will be used.

The output channel must be specified and must exist. This will usually point to a DataProc
that will then process the linked data packets produced by the simulator.

The CCTK version of the simulator handles commanding. The simulator can receive
commands in one of two ways, it can receive commands over a hard-coded named channel.
These are specified by the -i option on the command line. You may specify as many channels
as necessary. The simulator can also receive commands by registering in the port tables for
commands for a specified port.

In this case, a series of port_fds must be specified. Once each cycle, the simulator will check
for commands on each input channel and on the unnamed channel assigned to the port FD’s.
When a command is received, the proper simulation command will be issued.

To register a command with the simulator, use the Sim_NewCmd command. The following
registers a command that will stop the simulator whenever the CCTK StopSim command is
received.

sim> Sim_NewCmd -type stop -name StopSim

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 100

There are two key things to remember when using the CCTK simulator:

! The simulator DOES NOT perform reverse conversion on any of the data so you must be
simulating data that is either not converted or you must simulate the raw value of the
measurement.

! The simulator DOES NOT pass parameters to commands. When a command is received,
only the Fd of the command is passed from the CCTK interface module to the simulator.

6.4 Simulation Engine and Tcl
The simulation language is based upon Tcl, so all valid Tcl commands and syntax are valid
within the simulator. This greatly extends and enhances the capabilities of the simulator.
Please see a Tcl reference book or the World Wide Web for more information on
programming in Tcl.

Although it is possible to build simulation scripts without an understanding of the Tcl
language, the full power of the simulator can only be obtained when Tcl constructs are used in
creating simulation scripts.

6.5 Simulation Language
This section focuses on the simulation language. The simulation language is the same for all
three versions of the simulator (dsim, gsim, and csim). In fact, many times, the scripts tested
using dsim can easily and quickly be converted to csim scripts with little or no work.

6.5.1 Key Simulation Modules

All simulation scripts are composed of three key components:

! Measurements Modules

! Command Modules

! Event Modules
The simulator provides a series of commands to create, query, update, and delete these three
types of modules.

Measurement modules are used to update data within the simulator. A measurement module
can be responsible for updating a single piece of data or a hundred pieces of data. All
simulation scripts will be composed of one or more measurement modules. The simulator
defines many different kinds of measurement modules (such as constant, random, and file).
Details on the different kinds of measurement modules are given below.

Command modules are used to respond to commands entering the simulator. The simulator
provides a means by which it can be commanded. Whenever a particular command is
received, the simulator sees if a command module has been defined to handle that command.
If a command module has been defined, it will be executed. Just as there are many different
types of measurement modules, there are many different types of command modules. Details
on the different kinds of command modules are given below.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 101

Event modules are used to cause asynchronous events to occur based upon some condition.
For example, an event module can be used to change the parameters of a measurement
module when a specific CDT is reached. Another example would be when a measurement
exceeds a value, a special script could be evaluated. Just as with commands and
measurements, there are many different types of event modules. Details on the different kinds
of event modules are given below.

6.5.2 Update Cycle

The simulator operates on a fixed update cycle. Once each update cycle it performs the
following tasks:

! Processes any pending commands.

! Processes all event modules, executing those whose condition is true.

! Updates all measurement modules.

The update cycle is started by issuing the <Sim_Run> command to the simulator. Once the
<Sim_Run> command is issued, the simulator will start the update cycle and loop until it is
stopped by either an OS signal (INTR/TERM/KILL) or by having the <Sim_Stop> command
issued. The simulator can also be programmed to run a fixed number of iterations and then
stop. The following are the details on the <Sim_Run> and <Sim_Stop> commands:

sim> Sim_Run [update_rate [iterations]]

Sim_Run will cause the simulator to enter its update loop. If no update rate is specified, the
default of once per second will be used. If an update rate is given, the simulator will perform
its update loop once each number of seconds specified. If the iterations is set, the simulator
will loop that number of iterations before stopping.

sim> Sim_Stop

Sim_Stop will cause the simulator to exit its update loop at the beginning of the next cycle.

6.5.3 Core Simulator Commands

The simulator defines four commands for each type of module. The commands for operating
on the measurement modules are:

! Sim_NewMeas

! Sim_UpdateMeas

! Sim_QueryMeas

! Sim_DelMeas

The commands for the command modules are:

! Sim_NewCmd

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 102

! Sim_UpdateCmd

! Sim_QueryCmd

! Sim_DelCmd

The commands for the event modules are:

! Sim_NewEvent

! Sim_UpdateEvent

! Sim_QueryEvent

! Sim_DelEvent

In addition, there are several other miscellaneous commands which are described in this
section.

All of the above commands take a series of arguments. These always take on the following
form:

<argument=value>

Where argument is the argument that needs to be set and value is the value it needs to be set
to. Each of the above commands can take multiple argument/value pairs. The order of the
pairs is unimportant. However, some arguments are only valid for certain modules and/or
certain types of modules. Details on which commands accept which arguments are given
below. Details on arguments defined by different types of modules are provided in modules
Section 6.5.4 below.

All of the above commands are valid Tcl commands. They will behave as normal Tcl
commands. If an error occurs while processing, a Tcl error will be returned and a textual
description of the error will be placed in the results buffer. The textual description should
provide adequate information for determining the source of the problem.

6.5.3.1 New Simulation Command Definition
Sim_New{Meas|Cmd|Event} <name=module_name> <type=module_type>

[<active={true|false}] [<argument=value> <...>]

Sim_New{Meas|Cmd|Event} is used to create a new module. To create a new module, at least
two arguments are required. The first is the name of the module. This name will be used as a
reference to the module in other parts of the simulation script. The second argument is the
type of module to create. As stated previously, there are many different types of measurement,
command, and event modules, this type indicates what needs to be created. Based upon the
type, additional arguments may be required and additional optional arguments may be
specified. All Sim_New{Meas|Cmd|Event} commands can take at least one optional
argument. That option argument defines whether or not the module is active. An inactive
module will perform/take no action. The default is true.

For example, the following command creates a measurement module named “TestMeas” of
type “const” and sets its value to “10”.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 103

sim> Sim_NewMeas name=TestMeas type=const value=10

6.5.3.2 Update Simulation Command Definition
Sim_Update{Meas|Cmd|Event} <name=module_name> [<active={true|false}]

[<argument=value> <...>]

Sim_Update{Meas|Cmd|Event} is very similar to the new command. The update command is
used to change any argument associated with a particular module. (NOTE: it may not be
possible to change some arguments, for example, once a type is specified, it cannot be
changed). Any module will always be able to accept active as part of the update arguments.
Other arguments are defined by a particular module.

For example, the following command updates the measurement module created in the new
example:

sim> Sim_UpdateMeas name=TestMeas value=20

To set it to inactive, the following command is issued:

sim> Sim_UpdateMeas name=TestMeas active=false

6.5.3.3 Query Simulation Command Definition
Sim_Query{Meas|Cmd|Event} <name=module_name> <query=argument>

Sim_Query{Meas|Cmd|Event} allows individual arguments associated with a module to be
queried. The query command always takes two arguments, the name of the module to query
and the argument to query. Any argument known to a module can be queried, however, only
one argument can be queried at a time. The argument is returned as a string.

For example, the following command queries the value of the measurement module created in
the previous example:

sim> Sim_QueryMeas name=TestMeas query=value

The active status can be checked as well:

sim> Sim_QueryMeas name=TestMeas query=active

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 104

6.5.3.4 Delete Simulation Command Definition
Sim_Del{Meas|Cmd|Event} <name=module_name>

This command allows a module to be removed from the simulator. The delete command
always takes a single argument that specifies the name of the module to delete.

For example, to remove the module created previously:

sim> Sim_DelMeas name=TestMeas

6.5.3.5 Issue Simulation Command Definition
Sim_Issue <command name>

This command will cause the specified command module to execute. This command is
provided as a way to force a command to execute, bypassing the normal flow through the
external interface module.

6.5.3.6 Time Simulation Command Definition
Sim_Time <time arguments>

The simulator has access to the system time facilities. Depending on which variant of the
simulator is currently being executed, the backend that drives the time in the simulator is
different. However, the front-end that the user interfaces with is always the same. The
following set of commands should always work from within the simulator.

sim> Sim_Time cdt

Queries the current state of the countdown time. A list of two arguments is returned. The first
is the state of the clock, running or stopped. The second is the number of microseconds the
clock is currently set to. If the clock is running, this will change with each query of the clock.

sim> Sim_Time cdt start

Starts the countdown (cdt) clock running.

sim> Sim_Time cdt stop

Stops the cdt clock from running.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 105

sim> Sim_Time cdt set <time>

Sets the cdt clock to the specified time. If the clock is running, it continues to run, but the new
time is used. If the clock is not running, it will remain stopped until started. <time> should be
the number of microseconds you wish to set the clock to. It can be positive or negative.

sim> Sim_Time sutc

Queries the current state of the simulated universal time (SUTC). A list of two arguments is
returned. The first is the state of the clock, running or stopped. The second is the number of
microseconds the clock is currently set to. If the clock is running, this will change with each
query of the clock.

sim> Sim_Time sutc start

Starts the sutc clock running.

sim> Sim_Time sutc stop

Stops the sutc clock from running.

sim> Sim_Time sutc set <time>

Sets the sutc clock to the specified time. If the clock is running, it continues to run, but the
new time is used. If the clock is not running, it will remain stopped until started. <time>
should be the number of microseconds you wish to set the clock to. It must be positive.

sim> Sim_Time utc

Returns the current, real-utc.

6.5.4 Core Simulator Modules

6.5.4.1 External Interface Modules
It is possible that external interface modules can implement simulator commands for specific
purposes. This section describes the interface specific commands.

Sim_GlgIf triplet new <resource> <{meas1 meas2 meas3}>

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 106

This command allows the simulator to simulate a GLG triplet. You specify three
measurements that are being simulated in the normal manner. At the end of each cycle, GLG
will export these measurements as the specified resource. Note, this command is only valid in
the GLG simulator (gsim).

6.5.4.2 Simulation Measurement Modules
This section discusses the different types of measurement modules defined within the core
simulation environment and the arguments that the modules accept.

type=const
Constant measurement module’s values do not change with time. They can only be changed
by performing an update on the module. Each constant module defines a single measurement
within the simulation environment. The constant type supports the following arguments:

! name – the name of the module.

! active – whether or not the module is active. (default = true)

! external – the external tag that the external interface uses to identify this measurement. If
this is not defined, the name of the module is used. (default = not defined)

! force – force indicates whether or not the value should be sent updated only when it
changes (force = false) or every cycle regardless of whether or not it changes (force =
true). Due to the implementation of SimEngine, setting force to false for a constant, will
cause NO DATA to be sent at any time. Therefore, it is ill advised to set force to false
when using the const type. (default = true)

! value – the constant value. (default = (uninitialized))

type=rand
The random type will generate a random number within a range each cycle. Each random
module defines a single measurement within the simulation environment. The random type
supports the following arguments:

! name – the name of the module.

! active – whether or not the module is active. (default = true)

! external – the external tag that the external interface uses to identify this measurement. If
this is not defined, the name of the module is used. (default = not defined)

! force – force indicates whether or not the value should be sent updated only when it
changes (force = false) or every cycle regardless of whether or not it changes (force =
true). (default = false)

! value – the current value.

! lower – this represents the lower bound. (default = 0)

! upper – this represents the upper bound. (default = 1)

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 107

! integral – this is a true/false argument whether or not the random number should be an
integer type or a floating point type. (default = false)

type=square
This type will allow a square wave to be generated. Multiple arguments can be passed to the
procedure as defined below. The square type supports the following arguments:

! name – the name of the module.

! active – whether or not the module is active. (default = true)

! external – the external tag that the external interface uses to identify this measurement. If
this is not defined, the name of the module is used. (default = not defined)

! force – force indicates whether or not the value should be sent updated only when it
changes (force = false) or every cycle regardless of whether or not it changes (force =
true). (default = false)

! value – the current value.

! period – This indicates the number of seconds to complete one iteration of the wave.
(default = 10.0)

! upper – a string to return when the wave is at its upper value. (default = upper)

! lower – a string to return when the wave is at its lower value. (default = lower)

type=sine
This type will allow several different types of sine waves to be produced. Multiple arguments
can be passed to the procedure as defined below. The sine type supports the following
arguments:

! name – the name of the module.

! active – whether or not the module is active. (default = true)

! external – the external tag that the external interface uses to identify this measurement. If
this is not defined, the name of the module is used. (default = not defined)

! force – force indicates whether or not the value should be sent updated only when it
changes (force = false) or every cycle regardless of whether or not it changes (force =
true). (default = false)

! value – the current value.

! amplitude – This indicates the maximum "height" of the wave. (default = 1)

! offset – This is the offset from zero. (default = 10.0)

! period – This indicates the number of seconds to complete one iteration of the wave.
(default = 10.0)

! bias – Bias can be positive, negative, or 0. A 0 or neutral bias will generate a "normal"
sine wave. A positive bias will cause the lower part of the wave form to flip. This is
similar to taking the abs() of the result of the sine wave. A negative bias will cause the

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 108

opposite to happen and the upper part of the wave form will flip. This is similar to taking
the -abs() of the result. (default = 0)

! integral– this is a true/false argument whether or not the random number should be an
integer type or a floating point type. (default = false)

type=saw
This type will allow several different types of sawtooth waves to be produced. Multiple
arguments can be passed to the procedure as defined below. The saw type supports the
following arguments:

! name – the name of the module.

! active – whether or not the module is active. (default = true)

! external – the external tag that the external interface uses to identify this measurement. If
this is not defined, the name of the module is used. (default = not defined)

! force – force indicates whether or not the value should be sent updated only when it
changes (force = false) or every cycle regardless of whether or not it changes (force =
true). (default = false)

! value – the current value.

! amplitude – This indicates the maximum "height" of the wave. (default = 1)

! offset – This is the offset from zero. (default = 10.0)

! period – This indicates the number of seconds to complete one iteration of the wave.
(default = 10.0)

! integral– this is a true/false argument whether or not the random number should be an
integer type or a floating point type. (default = false)

type=ramp
This type will allow a value to "ramp" from some initial value to some final value. Several
different types of ramping is supported. These types are described below:

! name – the name of the module.

! active – whether or not the module is active. (default = true)

! external – the external tag that the external interface uses to identify this measurement. If
this is not defined, the name of the module is used. (default = not defined)

! force – force indicates whether or not the value should be sent updated only when it
changes (force = false) or every cycle regardless of whether or not it changes (force =
true). (default = false)

! value – the current value.

! initial – the initial value for this algorithm. This is where the ramping will start. (required
argument)

! final – the final value for this algorithm. This is where the ramping will end. (required
argument)

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 109

! period – the time that it will take to go from the initial value to the final value. (default =
10.0)

! delay – if this time is set the ramping will not start until after the delayed time is
complete. This can be used to implement a pause before the value actually starts to
change. (default = 0)

! algo – this indicates the algorithm to use during the ramping. Currently, only a linear
algorithm is supported. In the future other types may be supported. (default = linear)

! integral– this is a true/false argument whether or not the random number should be an
integer type or a floating point type. (default = false)

The ramp command will reset itself if ANY modifications are made to the above parameters
using the query command.

type=tcl
This is a special type that will obtain the next value of a measurement from a Tcl script. Each
Tcl module defines a single measurement within the simulation environment. Each time an
update cycle is performed, the specified Tcl script will be evaluated. The new value should be
returned from this script. The Tcl type supports the following arguments:

! name – the name of the module.

! active – whether or not the module is active. (default = true)

! external – the external tag that the external interface uses to identify this measurement. If
this is not defined, the name of the module is used. (default = not defined)

! force – force indicates whether or not the value should be sent updated only when it
changes (force = false) or every cycle regardless of whether or not it changes (force =
true). (default = false)

! value – the current value.

! script – the script to evaluate. <this is required>

type=delim
This type will read its input from a file. The file can have any number of columns, delimited
by a fixed character. Each update cycle, one row from the file will be read and fed into the
simulator. Each column can either have a tag assigned to it or be ignored. The delim type
supports the following arguments:

! name – the name of the module.

! active – whether or not the module is active. (default = true)

! external – the external tag that the external interface uses to identify this measurement. If
this is not defined, the name of the module is used. (default = not defined)

! force – force indicates whether or not the value should be sent updated only when it
changes (force = false) or every cycle regardless of whether or not it changes (force =
true). (default = false)

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 110

! delim – this indicates the delimiter character that is between the fields. (default = ,)

! ignore – this indicates the number of initial rows to ignore (probably because of headers).
(default = 0)

! tags – this is a Tcl list. There should be the same number of items in the list as there are
fields in the file. This identifies the tag to be associated with each field in the file. If a
member of this list is blank, that field will be ignored. <this is a required parameter>

! repeat – this indicates the action to take when the end of the file is reached. If this is true,
the simulator will continue reading from the beginning of the file. If this is false, all
values will be held at their current state. (default = true)

! file – the full path to the file to read. This is a required argument.

type=cdt
This type will read its input from a file. The file can have any number of columns, delimited
by a fixed character. Each update cycle, the "time" column will be checked against the current
CDT. If the time has passed, then that row will be fed through the simulator. Each column can
either have a tag assigned to it or be ignored. The delim type supports the following
arguments:

! name – the name of the module.

! active – whether or not the module is active. (default = true)

! external – the external tag that the external interface uses to identify this measurement. If
this is not defined, the name of the module is used. (default = not defined)

! force – force indicates whether or not the value should be sent updated only when it
changes (force = false) or every cycle regardless of whether or not it changes (force =
true). (default = false)

! delim – this indicates the delimiter character that is between the fields. (default = ,)

! ignore – this indicates the number of initial rows to ignore (probably because of headers).
(default = 0)

! time – this is a number indicating which column has the time field. Assume the first
column is 1. This number must be less than the maximum number of columns in the file.
(default = 1)

! tags – this is a Tcl list. There should be the same number of items in the list as there are
fields in the file. This identifies the tag to be associated with each field in the file. If a
member of this list is blank, that field will be ignored. <this is a required parameter>

! file – the full path to the file to read. This is a required argument.

6.5.4.3 Simulation Command Modules
This section discusses the different types of command modules defined within the core
simulation environment and the arguments that the modules accept.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 111

type=tcl
This command type will evaluate the specified Tcl procedure whenever the command is
received. The following arguments are supported:

! name – the name of the module.

! external – the external tag that the external interface uses to identify this command. If
this is not defined, the name of the module is used. (default = not defined)

! active – whether or not the module is active. (default = true)

! proc – the procedure to evaluate. <this is required>

! script – the script to evaluate. <this is required>

! file – the file to evaluate. <this is required>

! args – this defines any additional arguments that will be passed to the procedure. (default
= none defined)

NOTE: Only one of proc/script/file may be specified. Only the procedure will use the
args/current parameters.

type=stop
This command will cause the simulator update cycle to stop when received. The following
arguments are supported:

! name – the name of the module.

! external – the external tag that the external interface uses to identify this command. If
this is not defined, the name of the module is used. (default = not defined)

! active – whether or not the module is active. (default = true)

6.5.4.4 Event Modules
This section discusses the different types of event modules defined within the core simulation
environment and the arguments that the modules accept.

type=cdt
This event type will cause a Tcl procedure/script/file to evaluate whenever the cdt time
passes. The following arguments are supported:

! name – the name of the module.

! active – whether or not the module is active. (default = true)

! cdt – the cdt time to examine.

! script – the script to evaluate. <this is required>

! args – this defines any additional arguments that will be passed to the Tcl code if a
procedure/script is defined. (default = none defined)

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 112

The Tcl code will only be evaluated once. This will happen at the earliest cycle after the
specified countdown time passes. Only one of proc/script/file may be specified.

6.6 Simulation Examples
Table 6-2 lists several example simulation scripts available for reference, their location, and a
short description of each.

Table 6-2: Simulation scripts

Script
Name Location Description

simple.sim ${CCT_HOME}/projects/SIMPLE/sim

A simple simulation script that simulates many of
the measurements associated with the SIMPLE
project. This simple simulation attempts to use most
of the basic simulation module types.

derived.sim ${CCT_HOME}/projects/SIMPLE/sim

A more complicated script that derives the
simulated value of a measurement using a Tcl
script. Some knowledge of Tcl is helpful in
understanding this script.

cdt.sim ${CCT_HOME}/projects/SIMPLE/sim

This script alters the simulation based upon the
current CDT. Five analog measurements are
simulated and their values are altered as the CDT
counts down.

simple.sim ${CCT_HOME}/projects/SuperLokiDemo/sim

This simulation script is used to demonstrate
SuperLoki Launch Operations. This script reacts to
the commands present on the firing circuit display
and modifies the measurements as appropriate.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 113

7 RETRIEVAL PARAMETER FILE

The retrieval parameter file defines all of the parameters (such as FDS, times, filters, etc.)
associated with a CCTK retrieval. This chapter defines the syntax of the retrieval parameter
file, which NrtRetrieve and HistRetrieve take as input. The retrieval parameter file should
rarely have to create this file by hand. The syntax of the file is provided here as a reference for
assistance in resolving problems associated with retrievals.

7.1 File Syntax
Retrieval parameter files are simple text files, parsed by a Tcl interpreter, that describe what
needs to be retrieved. All Tcl commands are valid. Additionally, a set of retrieval-specific
command indicate exactly what to retrieve.

RetrievalType <PROCESSED | RAW | RAW_AND_PROCESSED>

OutputFile <ret_outfile>

[StartTime YYYY/DDD/HH:MM:SS.mmm]

[StopTime YYYY/DDD/HH:MM:SS.mmm]

[Duration HH:MM:SS.mmm]

[SystemMsgs <YES/NO>]

Meas <Fd> <ANALOG_TYPE | UNSIGNED_INT_TYPE | SIGNED_INT_TYPE | \

DISCRETE_TYPE | BYTE_ARRAY_TYPE> <ALL | NORMAL | EXCEPTION | \

INVALID> \ <ALL_VALUES | ANY_CHANGES | DELTA_VALUE |

SPECIFIC_VALUE | INSIDE_RANGE | OUTSIDE_RANGE> \

[parameters ...]

Cmd <Fd> <CMD_DES_TYPE_S> <SYS_CMD | EI_CMD>

7.2 Command Descriptions
RetrievalType PROCESSED|RAW|RAW_AND_PROC
This keyword is used to specify the type of retrieval. The valid types are listed above. If
RetrievalType is not specified, it defaults to PROCESSED.

OutputFile filename
This keyword specifies the name of the output file to use when storing the results of the
retrieval. It can be overridden with command line options for NrtRetrieve and HistRetrieve. It
must be specified either on the command line or in the file.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 114

StartTime YYYY/DDD/HH:MM:SS.mmm
Indicates the time to start searching for Retrieval data. If this value is invalid or not present,
ARS will default to the earliest time stored within the archive. Only two of StartTime,
StopTime, and Duration may be specified; the third will be calculated automatically. This
value can be overridden on the command line of NrtRetrieve and HistRetrieve.

StopTime YYYY/DDD/HH:MM:SS.mmm
Indicates the time to stop searching for Retrieval data. If this value is invalid or not present,
ARS will default to the latest time stored within the archive. Only two of StartTime,
StopTime, and Duration may be specified; the third will be calculated automatically. This
value can be overridden on the command line of NrtRetrieve and HistRetrieve.

Duration HH:MM:SS.mmm
Indicates the duration of the retrieval. If this value is invalid or not present, ARS will default
to the entire archive. Only two of StartTime, StopTime, and Duration may be specified; the
third will be calculated automatically.

SystemMessages YES|NO
Indicates whether or not system messages should be retrieved. At this time, system messages
can only be retrieved as a group. The default value is NO.

Meas FD MEAS_TYPE RETR_TYPE FILTER [FILTER OPTIONS ...]
Indicates that a measurement with the specified FD should be retrieved. The user must supply
the measurement type so that some basic checks can be performed. The user must also supply
the retrieval type, the retrieval type must be one of:

ALL, NORMAL, EXCEPTION, INVALID
The user must also specify a filter. Valid filters are: ALL_VALUES, ANY_CHANGES,
DELTA_VALUE, SPECIFIC_VALUE, INSIDE_RANGE, and OUTSIDE_RANGE.
Depending on the filter, one or two filter options may be necessary. ANY_CHANGES,
DELTA_VALUE, SPECIFIC_VALUE all take one filter option; INSIDE_RANGE,
OUTSIDE_RANGE take two filter options.

Cmd FD TYPE CMD_TYPE
Indicates that a command with the specified FD should be retrieved. The type will also be
CMD_DES_TYPE_S currently. CMD_TYPE should either be SYS_CMD or EI_CMD.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 115

7.3 Example
RetrievalType PROCESSED

OutputFile ret_outfile

ParameterFile ret_paramfile

StartTime 99/152/16:04:00.123

StopTime 99/152/17:04:00.000

Duration 5

SystemMsgs YES

Meas MyFd1 BYTE_ARRAY_TYPE NORMAL ALL_VALUES

Meas MyFd2 DISCRETE_TYPE NORMAL ANY_CHANGES

Meas MyFd3 SIGNED_INT_TYPE NORMAL DELTA_VALUE 5

Meas MyFd4 UNSIGNED_INT_TYPE NORMAL SPECIFIC_VALUE 50

Meas MyFd5 ANALOG_TYPE NORMAL INSIDE_RANGE 1.0 10.0

Meas MyFd6 ANALOG_TYPE NORMAL OUTSIDE_RANGE 10.0 20.0

Meas MyFd1 BYTE_ARRAY_TYPE EXCEPTION ALL_VALUES

Meas MyFd2 DISCRETE_TYPE EXCEPTION ALL_VALUES

Meas MyFd3 SIGNED_INT_TYPE EXCEPTION ALL_VALUES

Meas MyFd4 UNSIGNED_INT_TYPE EXCEPTION ALL_VALUES

Meas MyFd5 ANALOG_TYPE EXCEPTION ALL_VALUES

Meas MyFd6 ANALOG_TYPE EXCEPTION ALL_VALUES

Meas MyFd1 BYTE_ARRAY_TYPE INVALID ALL_VALUES

Meas MyFd2 DISCRETE_TYPE INVALID ALL_VALUES

Meas MyFd3 SIGNED_INT_TYPE INVALID ALL_VALUES

Meas MyFd4 UNSIGNED_INT_TYPE INVALID ALL_VALUES

Meas MyFd5 ANALOG_TYPE INVALID ALL_VALUES

Meas MyFd6 ANALOG_TYPE INVALID ALL_VALUES

Meas MyFd1 BYTE_ARRAY_TYPE ALL ALL_VALUES

Meas MyFd2 DISCRETE_TYPE ALL ANY_CHANGES

Meas MyFd3 SIGNED_INT_TYPE ALL DELTA_VALUE 5

Meas MyFd4 UNSIGNED_INT_TYPE ALL SPECIFIC_VALUE 50

Meas MyFd5 ANALOG_TYPE ALL INSIDE_RANGE 1.0 10.0

Meas MyFd6 ANALOG_TYPE ALL OUTSIDE_RANGE 10.0 20.0

Cmd MyCmd1 CMD_DES_TYPE_S SYS_CMD

Cmd MyCmd2 CMD_DES_TYPE_S EI_CMD

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 116

8 PROCESS MANUAL PAGES

This chapter includes process manual pages for key CCTK processes.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 117

NAME
ArchiveControl - Archive monitor and control application

SYNOPSIS
ArchiveControl [-c command_channel] [-k kpath]

DESCRIPTION
Archive Control handles system commands to activate/inhibit the temporary archive (TAM) capability. Upon receipt
of a valid command, Archive Control sets the appropriate state variable in a shared memory segment used by the
ARS processes (TamArs) to control the state (active/inhibited) of the TAM archival.

This process must be started after the TamArs process has initialized, as it attaches to the shared memory segment
created by TamArs.

OPTIONS
 [-c command_channel]
 This parameter is optional. Commands to Archive Control are sent via this channel. Commands are used to
activate/inhibit archiving of data to the temporary and permanent archives. If this parameter is not specified, it
defaults to NEXT_AVAIL_CHAN.
[-k kpath]
 This parameter is optional. The Archive Control process must have a kpath to assist in accessing channels and shared
memory tables. If not specified on the command line, the value is obtained from an environment variable named
KPATH.

RETURN VALUES
If an error occurs during initialization, an error message is output and Archive Control exits. Otherwise, Archive
Control runs until a terminate signal is received.

SEE ALSO
TamArs, PamArchive

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 118

NAME
ArsMon - monitor ARS process status

SYNOPSIS
ArsMon [kpath]

DESCRIPTION
ArsMon is an interactive display of the current status of the ARS. ArsMon must have a kpath to assist in accessing
the status shared memory segment. The kpath may be specified on the command line or by an environment variable
named KPATH. ArsMon has a help screen which lists the options the user may enter to control the ArsMon display.
Hit the "h" key to display the help screen.

RETURN VALUES
Upon normal termination, ArsMon returns zero. Otherwise, an error message is output and one is returned.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 119

NAME
CDTimeControl - The Count Down Time (CDT) Control process.

SYNOPSIS
CDTimeControl -p Port_FD_Name -o Output_Chan_Name [-muikcCsgGDh]

DESCRIPTION
The CDTimeControl process generates the system Count Down Time and sends it to DataProc.

CDTimeControl processes the following system commands to control the system CDT:

Set CDT - Set the initial CDT in seconds and milliseconds.

Start CDT - Start decrementing the current value of the CDT.

Stop CDT - Stop decrementing the current value of the CDT.

Cancel CDT - Cancel the current value of the CDT.

OPTIONS
 -p Port_FD_Name
The Port_FD_Name is a required text string command line argument. The Port FD is used to identify the port
descriptor the CDTimeControl process will use to set its distribution vector.

-o Output_Chan_Name
The Output_Chan_Name is a required text string command line argument. The Output Channel is the channel where
the current CDT data packets are distributed.

-m Mode (<internal>/external)
The Mode is an option text string command line argument. The mode identifies whether the process time source is
internal (default) or external. The external interface option is used to activate any extended mode interface built on
top of the CDTimeControl process.

-u Update_Rate
The Update_Rate is an optional integer command line argument. The Update Rate specifies the number of
milliseconds between successive CDT updates to the Output Channel. The Update Rate does not affect the CDT
value. A default Update_Rate of 100 milliseconds will be used if one is not specified on the command line. The
integer value of the Update Rate must be within the following range:
0 < Update_Rate < 1000 msec

-i Input_Chan_Name
The Input_Chan_Name is an optional text string command line argument. The Input Channel is the channel where
CDTimeControl receives system commands. The next available Input Channel will be used as a default if one is not
specified on the command line.

-k KPATH_Name
The KPATH_Name is an optional text string command line argument. The KPATH Name specifies the value to be
used to set the KPATH environment variable. The KPATH environment variable is a required environment variable.
The existing KPATH environment variable will be used as a default if one is not specified on the command line.

-c CDT_Value_FD_Name
The CDT_Value_FD_Name is an optional text string command line argument. The CDT Value FD specifies the FD
where the current CDT seconds and milliseconds value will be distributed. The CDT Value FD

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 120

'CURRENT_CDTIME_TIME_VAL_FD' is specified in a system header file and will be used as a default if one is
not specified on the command line.

-C CDT_Text_FD_Name
The CDT_Text_FD_Name is an optional text string command line argument. The CDT Text FD specifies the FD
where the current CDT value will be distributed as a Julian Time of Year (JTOY) text string (-
DDD:HH:MM:SS.mmm). The CDT Text FD 'CURRENT_CDTIME_TIME_TXT_FD' is specified in a system
header file and will be used as a default if one is not specified on the command line.

-s CDT_Status_FD_Name
The CDT_Status_FD_Name is an optional text string command line argument. The CDT Status FD specifies the FD
where the current CDT status will be distributed as a unsigned integer value. The CDT Status FD
'CURRENT_CDTIME_STATUS_FD' is specified in a system header file and will be used as a default if one is not
specified on the command line.

-g GMT_Value_FD_Name
The GMT_Value_FD_Name is an optional text string command line argument. The GMT Value FD specifies the FD
where the current GMT seconds and milliseconds value will be distributed. The GMT Value FD
'CURRENT_GMTIME_TIME_VAL_FD' is specified in a system header file and will be used as a default if one is
not specified on the command line.

-G GMT_Text_FD_Name
The GMT_Text_FD_Name is an optional text string command line argument. The GMT Text FD specifies the FD
where the current GMT value will be distributed as a Julian Time of Year (JTOY) text string
(YYYY:DDD:HH:MM:SS.mmm). The GMT Text FD 'CURRENT_GMTIME_TIME_TXT_FD' is specified in a
system header file and will be used as a default if one is not specified on the command line.

-D CDT_Dbg_Level
The -D option will enable debug mode. Debug mode causes verbose messages to be printed to a debug file in the log
directory. The debug filename is DEBUG.CDTimeControl.### where ### is the CDTimeControl process ID. The
CDT_Dbg_Level is an optional integer between 0 and 5 that determines how verbose the messages will be. Level 5
is most verbose.

-h
The -h option will print a help message to the screen. The help message indicates the current default values of the
optional command line arguments.

 MEASUREMENTS
The CDTime value is distributed by the CDTimeControl process using the three measurements listed below. One
BYTE_ARRAY measurement contains the current signed CDTime value in seconds and milliseconds formatted as a
sys_timeval_t structure. The other BYTE_ARRAY measurement contains the current CDTime value formatted as a
signed Julian Time of Year text string that includes milliseconds (SDDD:HH:MM:SS.mmm). The
UNSIGNED_INTEGER measurement contains a state code number indicating the operational state of the CDTime.
The state codes are listed below. The GMTime value is distributed by the CDTimeControl process using the two
measurements listed below. These are formatted similar to the CDTime except that the GMTime is unsigned
(YYYY:DDD:HH:MM:SS.mmm). These FD’s and state codes are defined in a system header file (see
KConstants.h). The CDTime measurement FD’s are updated at the update rate specified for the CDTimeControl
process.

 Measurement FD Name Meas_Type Meas_Size
 --––––––––- ––––– ––––-
 CDTime_Time_Value BYTE_ARRAY 8 bytes
 CDTime_Time_Text BYTE_ARRAY 18 bytes
 CDTime_Status INTEGER 4 bytes

 GMTime_Time_Value BYTE_ARRAY 8 bytes
 GMTime_Time_Text BYTE_ARRAY 22 bytes

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 121

 CDT State Definition Value Description
 –––––––––––- ––- –––––––––––––––––
 CDTIME_STATUS_INVALID 0 CDTimeControl process not running.
 CDTIME_STATUS_CANCELLED 1 CDTime is cancelled (CDT not set).
 CDTIME_STATUS_STOPPED 2 CDTime is stopped (CDT hold).
 CDTIME_STATUS_RUNNING 3 CDTime is counting.

COMMANDS
The CDTime commands are used to control the system Count Down Time (CDT) clock. These parameterized system
commands are recognized by the CDTimeControl process. The four basic operations available are Set, Start, Stop
and Cancel. The Command Descriptor Table includes the following system command FD’s:

 Command Parameters
 ––––––––––––––––––– -----------------–––
 Pre-defined Variable
 Command FD Name uint uint uint int int
 –––––––-------- –––- –––- ––––- –-– ––-
 1 Set_CDTime Op_Code Op_Opt Time_Opt Tsec Tmsec
 2 Start_CDTime Op_Code Op_Opt Time_Opt Tsec Tmsec
 3 Stop_CDTime Op_Code Op_Opt Time_Opt Tsec Tmsec
 4 Cancel_CDTime Op_Code Op_Opt Time_Opt Tsec Tmsec

The CDTime system commands have six parameters, two are pre-defined. The first parameter is a pre-defined byte
array used to clear the command parameters. The second parameter is a pre-defined integer used to specify the
Op_Code. The next four command parameters are variable integers used to specify the operation option, time option,
time seconds and time milliseconds. The state codes are defined in a system header file (see KConstants.h). The
command parameters are defined as follows:

 Op_Code Op_Opt Time_Opt Tsec Tmsec
 ––––––- –––––– ––––––––- –– ––-
 1.a SET_CMD_OP SET_CMD_OP ELAPSED_TIME_OPT secs msecs
 1.b SET_CMD_OP SET_CMD_OP CDT_TIME_OPT secs msecs
 1.c.* SET_CMD_OP SET_CMD_OP GMT_TIME_OPT secs msecs
 1.d.* SET_CMD_OP SET_CMD_OP LOCAL_TIME_OPT secs msecs

 2.a START_CMD_OP START_CMD_OP ELAPSED_TIME_OPT secs msecs
 2.b START_CMD_OP START_CMD_OP GMT_TIME_OPT secs msecs
 2.c START_CMD_OP START_CMD_OP LOCAL_TIME_OPT secs msecs

 3.a STOP_CMD_OP STOP_CMD_OP ELAPSED_TIME_OPT secs msecs
 3.b STOP_CMD_OP STOP_CMD_OP CDT_TIME_OPT secs msecs
 3.c STOP_CMD_OP STOP_CMD_OP GMT_TIME_OPT secs msecs
 3.d STOP_CMD_OP STOP_CMD_OP LOCAL_TIME_OPT secs msecs

 4.1.a CANCEL_CMD_OP SET_CMD_OP ELAPSED_TIME_OPT secs msecs
 4.2.a CANCEL_CMD_OP START_CMD_OP N/A N/A N/A
 4.3.a CANCEL_CMD_OP STOP_CMD_OP ELAPSED_TIME_OPT N/A N/A
 4.3.b CANCEL_CMD_OP STOP_CMD_OP CDT_TIME_OPT secs msecs
 4.3.c CANCEL_CMD_OP STOP_CMD_OP GMT_TIME_OPT secs msecs
 4.3.d CANCEL_CMD_OP STOP_CMD_OP LOCAL_TIME_OPT secs msecs
 4.4.a CANCEL_CMD_OP CANCEL_CMD_OP N/A N/A N/A

 State Definition Value Description
 –––––––– ––- –––––––––––––––––
 START_CMD_OP 1 Operation for a Start CDT Command
 STOP_CMD_OP 2 Operation for a Stop CDT Command
 SET_CMD_OP 5 Operation for a Set CDT Command
 CANCEL_CMD_OP 6 Operation for a Cancel CDT Command
 ELAPSED_TIME_OPT 101 Elapsed Time Value is specified
 CDT_TIME_OPT 102 Count Down Time Value is specified
 GMT_TIME_OPT 103 GMT(UTC) Time Value is specified
 LOCAL_TIME_OPT 104 Local (system) Time is specified

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 122

CDTime Command Descriptions

1 SET_CMD_OP
The SET_CMD_OP commands are used to set the initial value of the CDT clock. A command to set the initial value
of the CDT when it is already set is invalid and will generate an error. The CDT must be cancelled to change the
initial CDT value. Multiple CDT clocks are not available.
1.a Set initial CDT to the elapsed time value specified (i.e. initial CDT is set to -Time_Val). Negative time values are
invalid and converted to positive.
1.b Set initial CDT to the Count Down Time value specified. Positive and negative time values are valid.
1.c.* Set T0 to GMT time value specified. The CDT value will be calculated after the CDT is started so that T-Zero
(CDT=0) occurs at the specified GMT. Past time values are invalid and will generate an error.
1.d.* Set T0 to local time value specified. The CDT value will be calculated after the CDT is started so that T-Zero
(CDT=0) occurs at the specified local time. Past time values are invalid and will generate an error.

2 START_CMD_OP
The START_CMD_OP commands are used to start the CDT clock at current CDT value. A command to start the
CDT clock when it is not set or is already started is invalid and will generate an error. A new start command will
replace a pending start command. Multiple pending start commands are not available.
2.a Start CDT clock using current CDT value when elapsed time specified has expired. Negative time values are
invalid and converted to positive.
2.b Start CDT clock using current CDT value when system clock reaches GMT specified. Past time values are invalid
and will generate an error.
2.c Start CDT clock using current CDT value when system clock reaches local time specified. Past time values are
invalid and will generate an error.

3 STOP_CMD_OP
The STOP_CMD_OP commands are used to stop the CDT clock at current CDT value. A command to stop the CDT
clock when it is not set or is already stopped is invalid and will generate an error. Multiple pending stop commands
are available.
3.a Stop CDT clock using current CDT value when elapsed time specified has expired. Negative time values are
invalid and converted to positive.
3.b Stop CDT clock when CDT clock reaches CDT specified. Past time values are invalid and will generate an error.
3.c Stop CDT clock using current CDT value when system clock reaches GMT specified. Past time values are invalid
and will generate an error.
3.d Stop CDT clock using current CDT value when system clock reaches local time specified. Past time values are
invalid and will generate an error.

4 CANCEL_CMD_OP
The CANCEL_CMD_OP commands are used to cancel the CDT clock or any pending CDTime commands. A
command to cancel the CDT clock when it is not set is invalid and will generate an error. A command to cancel a
command that is not pending is invalid and will generate an error. The cancel commands use the 'Op_Opt' parameter
to identify the command operation to be cancelled. The command to cancel CDT will reset the CDT to zero. A new
cancel command will replace a pending cancel command. Multiple pending cancel commands are not available.
4.1.a Cancel the CDT clock and set the CDT value to zero when elapsed time specified has expired. Negative time
values are invalid and converted to positive.
4.2.a Cancel a pending START_CMD_OP command to start the CDT clock.
4.3.a Cancel the next pending STOP_CMD_OP 3.a command.
4.3.b Cancel a pending STOP_CMD_OP 3.b command that matches the CDT specified.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 123

4.3.c Cancel a pending STOP_CMD_OP 3.d command that matches the GMT specified.
4.3.d Cancel a pending STOP_CMD_OP 3.c command that matches the local time specified.
4.4.a Cancel a pending CANCEL_CMD_OP command to cancel the CDT clock.

RETURN VALUES
Returns 0 if no errors occur; 1 otherwise.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 124

NAME
CctkClient - Graphical client for CCTK

SYNOPSIS
CctkClient

DESCRIPTION
CctkClient is a graphical client application that interfaces with the CCTK system. CctkClient allows the user to
choose a project to interface with. CctkClient allows the user to start a project, stop a project, and view information
about a project. CctkClient uses a display tree to present a list of valid displays to the user. The CctkClient display
tree is configured in the project configuration file and dynamically at run-time.

When CctkClient is executed, it checks to see if the KPATH environment variable is defined. If the environment
variable is defined, then CctkClient will check the directory listed by the KPATH environment variable to see if a
valid project exists in the directory. If a valid project exists in the directory, it will be loaded.

OPTIONS
CctkClient does not support any options.

RETURN VALUES
CctkClient returns 0 if no errors occur during execution. A positive integer will be returned if an error occurs.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 125

NAME
ChanMan - monitor channels

SYNOPSIS
ChanMan [kpath]

DESCRIPTION
ChanMan is an interactive display of the current status of the kernel channels. ChanMan must have a kpath to assist
in accessing the channels. The kpath may be specified on the command line or by an environment variable named
KPATH. ChanMan has a help screen which lists the options the user may enter to control the ChanMan display. Hit
the "h" key to display the help screen.

RETURN VALUES
Upon normal termination, ChanMan returns zero. Otherwise, an error message is output and one is returned.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 126

NAME
ChannelReader - Perform generic CLIENT processing.

SYNOPSIS
ChannelReader -c channel_name [-noout] [-d debug_flag] [-i packet_id] [-r register_fd_filename] [-f
output_filename]

DESCRIPTION
ChannelReader acts as a generic CLIENT, providing channel read capablities. In normal usage, it reads packets over
the specified channel, acquiring the time embedded in the packet and comparing it to the current time to determine
latency. If the "-r" option is specified, ChannelReader registers for the FD names contained within the
register_fd_filename. ChannelReader will output the packets which are received to stdout, unless the capability is
explicitly inhibited during the startup of ChannelReader (-noout). It also supports a DEBUG mode (-d
TRUE/FALSE). ChannelReader may be used as a CLIENT without using a testing SERVER process. If the packets
are larger than the standard kernel packet_hdr (see KTypes.h), ChannelReader expects to find timetag information
within the packet header per the standard KERNEL header definition. If the timetag is not present in the appropriate
location, strange latency values will be recorded. In order to terminate ChannelReader, a "kill -15" (SIG_KTERM)
may be used; ChannelReader will terminate normally when it detects that the SERVER has closed the channel, after
at least one packet has been read.

OPTIONS
 -c channel_name
channel_name is the name of the channel which is providing the inputs to ChannelReader. This input is mandatory.
channel_name may be a temporary channel; this is done by specifying "TEMP" as the channel name. In this case,
packet_id must be entered. ChannelReader, in its standard operating mode, outputs packet information to stdout. This
must be redirected to a file.
-noout
The noout option inhibits the output to stdout.
-d debug_flag
debug_flag indicates whether the debug is to be active during execution. This value may be TRUE or FALSE; default
= FALSE.
-i packet_id
packet_id specifies the ID of the packet which is to be used on the STDDIST channel to specify the name of the
temporary channel to the SERVER process. This is required if a temporary channel is specified. ChannelReader (and
ChannelWriter) assume that the format of the STDDIST packet is the standard KERNEL packet header, followed by
the null-terminated string containing the name of the temporary channel.
-r register_fd_filename
This option is used to specify a file which contains a list of the FD’s for which ChannelReader is to register. The file
should contain one FD name per line, no extra text on each line. The file may contain comments, using the script file
comment character (#) as the first character in each line. The comments may be located anywhere within the file.
 -f output_filename
This option allows the user to specify that the output is to go to output_filename. If -noout is specified, no
information will be output to the file. If this option is not specified, AND if -noout is not specified, output will go to
stdout.

SEE ALSO
ChannelWriter

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 127

NAME
ChannelWriter - Write packets onto a KERNEL channel per commands specified in a script file, using packets
contained within packet files.

SYNOPSIS
ChannelWriter -s script_filename -c channel_name [-i packet_id] [-d g_debug]

DESCRIPTION
ChannelWriter, in union with its cohort, ChannelReader, support component and higher levels of testing by providing
a script- driven process which enables the tester to transmit channel packets at various rates. NOTE: ChannelWriter
does not require that ChannelReader be running as a CLIENT on the other side of a set of processes; neither does
ChannelReader require one (or more) ChannelWriters.

The tester is able to select between packet transmission at a desired transmit rate, or allowing
ChannelWriter/ChannelReader to determine and report on the maximum sustainable rate within the current
environment. When ChannelWriter execution is complete, ChannelWriter will terminate, and ChannelReader will
report on the average, highest, and lowest latency which was achieved.

ChannelWriter requires the input of the following:

OPTIONS
 -s script_filename
The name of the script which contains the commands necessry for the execution of this instance of ChannelWriter.
-c channel_name
The name of an authorized channel. If the channel is a temporary channel, specify channel name TEMP. In this case,
the packet ID which the server registers for to obtain the temporary channel name must also be specified. This
component assumes that the packet which will be received has the following format: standard KERNEL packet
header NULL-terminated string containing the name of the temporary channel.

-d debug_flag
debug flag, Default = FALSE, value must be [TRUE | FALSE]

SCRIPT LANGUAGE
The following commands are available in the ChannelWriter script files. The commands are case-sensitive. The
format of the commands within the script file is:

sequence_num command

where sequence_num is an integer. sequence_num will be used to determine the next command to be executed after a
GO_TO command. A pound sign (#) is used as a comment character; empty lines are also legit.

START_SCRIPT
All scripts are required to start with this statement. This allows ChannelWriter to detect the difference between the
start of the ChannelWriter script, and a simple UNIX comment line. A "END_SCRIPT" is not required (nor does one
exist): ChannelWriter assumes that EOF on the script file, or a line which does not begin with a pound sign, indicates
the end of the script.
OPEN filename
This command opens a file which contains channel packets. Up to 10 files may be open at any time.
CLOSE filename
This command closes a file which contains channel packets.
SUPERPACKET n

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 128

This command flags ChannelWriter that a superpacket is to be generated, with "n" subpackets. The rules for its use
are:

1. The READs which fill the superpacket(s) must follow immediately after the SUPERPACKET command.
Any other command turns off the SUPERPACKET flag.

2. ChannelWriter will perform the READs, sticking "n" packets at a time into the superpackets.
3. The final READ does not need to ensure that the superpacket contains "n" packets. ChannelWriter keeps

track of the number of subpackets automatically.
4. A superpacket is treated as a single packet, so a FLUSH will clean out the entire superpacket, and a

TRANSMIT will transmit the entire superpacket.

 READ n filename
 This command causes n packets to be read into the packet buffer. The packet buffer contains up to 20 packets. The
packets will be stored into the buffer sequentially as they are read; they will be stored after any packets which already
exist in the buffer. These packets should have the standard KERNEL header structure. ChannelWriter assumes the
standard structure, which includes locations for a timestamp, and writes the current time information into that
location within the packet during execution of the TRANSMIT command. This is the only modification of the
packet's contents performed by ChannelWriter.
 TRANSMIT n-m t r
 This command transmits packets n through m (first packet in the buffer is number 0) on the channel. The duration of
the transmission = t seconds (MUST be > 0), and packets are to be transmitted r times per second (0 indicates that
ChannelWriter is to perform at the maximum sustained pace over the specified duration.) Therefore, if you've
specified packets 0-4 at a rate of 5, the aggregate rate will be 25 packets per second. ChannelWriter currently uses a
"rough" transmission method: the packets are burst onto the network at the maximum transmission rate; the
transmitter then waits until the remainder of the current clock interval (1 second) has elapsed.

FLUSH n
 This command causes packet # n to be flushed from the buffer. The first packet in the buffer is number 0. All
packets subsequent to packet # n in the buffer will be moved to fill up the blank space.
SLEEP x
This command sleeps for duration x, where x is a integer value > 0 which indicates the number of
MICROSECONDS which are to be slept.

GO_TO seqnum
This command performs a direct "branch" to the sequence number specified by seqnum. The first instance of seqnum
in the script file will be found; execution will resume starting with the command associated with seqnum.
SCRIPT startup_string
This command allows you to start up anything else that you desire. The rest of the line, up to the first instance of the
comment character, is used to initiate another process. If the last non-blank character is an ampersand, the activity
will run in the background of the current process. Otherwise, if the last non-blank character is not an ampersand, the
specified activity will execute, and execution of the current script will pause until the execution of startup_string is
complete (think of it as a subroutine).

SAMPLE SCRIPT FILE

 ((((((((((((((((((((((((((((((((((((((())))))))))))))))))))))))))))))))
))))))) # r_sccs= " @(#)ChannelWriter.c 29.1 96/02/27 13:22:35:"

 # Start the ChannelReader, DataProc, and then the ChannelWriter

 ChannelReader -c DataProcChannel > ChannelReader.testout &
 DataProc DataProcChannel &
 ChannelWriter -c DataProcInChannel -s $0

 # START_SCRIPT
 ## This script opens a file and reads in 5 packets.
 ## It transmits the last 3 packets for 2 seconds; the aggregate rate
 ## is 3000 Hz
 ## It transmits all 5 packets for 1 second at an aggregate rate of 5

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 129

 hz ## It flushes the last 3 packets and reads in 3 more
 ## It then goes to the transmit statement
 ## This loop will continue until an EOF is hit in the input file,
 ## at which point ChannelWriter will terminate.
 #1 OPEN data_proc_script_1
 #1 READ 5 data_proc_packets_1
 #2 TRANSMIT 2-4 2 1000
 #2 TRANSMIT 0-4 1 1
 #2 FLUSH 4
 #2 FLUSH 3
 #2 FLUSH 2
 #2 READ 3 data_proc_packets_1
 #2 GO_TO 2
 od -x ChannelReader.testout | less
 ((((((((((((((((((((((((((((((((((((((())))))))))))))))))))))))))))))))
)))))))

SAMPLE SCRIPT FILE

 ((((((((((((((((((((((((((((((((((((((())))))))))))))))))))))))))))))))
))))))) # r_sccs= " @(#)ChannelWriter.c 29.1 96/02/27 13:22:35:"

 # Start the ChannelReader, DataProc, and then the ChannelWriter

 ChannelReader -c DataProcChannel > ChannelReader.testout &
 DataProc DataProcChannel &
 ChannelWriter -c DataProcInChannel -s $0

 # START_SCRIPT
 ## This script opens a file and reads in 5 packets into 2 superpackets.
 ## It transmits the 1st superpacket for 2 seconds
 ## It transmits both superpackets for 1 second
 ## It flushes the superpackets and reads in 2 regular packets
 ## It then goes to the transmit statement
 ## This loop will continue until an EOF is hit in the input file,
 ## at which point ChannelWriter will terminate.
 #1 OPEN data_proc_script_1
 ## Create 2 superpackets, max size = 3 subpackets, so the 1st has
 ## 3 subpackets, the 2nd superpacket has 2 subpackets
 #1 SUPERPACKET 3
 #1 READ 5 data_proc_packets_1
 #2 TRANSMIT 0-0 2 1000
 #2 TRANSMIT 0-1 1 1
 #2 FLUSH 1
 #2 FLUSH 0
 #2 READ 2 data_proc_packets_1
 #2 GO_TO 2
 od -x ChannelReader.testout | less
 ((((((((((((((((((((((((((((((((((((((())))))))))))))))))))))))))))))))
)))))))

SEE ALSO
ChannelReader

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 130

NAME
ClearSystemStateOnBoot - Script for use in system start scripts to automatically reset the system state.

SYNOPSIS
ClearSystemStateOnBoot <path to CCTK direcotry> <project directory> [project directory] [...]

DESCRIPTION
ClearSystemStateOnBoot is a simple shell script which calls SetSystemState for a series of projects. If the state of
any of those projects is not DOWN, ClearSystemStateOnBoot will change the project state to down.
ClearSystemStateOnBoot is provided as a simple way to ensure the state of a project is either DOWN or
FORCED_DOWN during system boot. This is necessary if the system crashed (i.e. power outage) while a CCTK
project was in the UP state.

OPTIONS
The first option is the path to the CCTK directory (aka CCT_HOME). This is necessary so that
ClearSystemStateOnBoot can find the CCTK binaries. The remaining options are the paths to the project directories
to check. Globbing is your friend if you keep multiple projects in a single directory.

SEE ALSO
SetSystemState, SystemState

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 131

NAME
DataProc - Kernel Data Processor

SYNOPSIS
DataProc -i input_channel_name [-o output_channel_name] [-k kpath] -t table_name [[-t table_name]...] [[-l shlib] ...]

OPTIONS
 -i input_chan_name
is the name of the channel where DataProc receives raw data packets for processing.
-l shlib
is the name of any additional shared libraries to be used by DataProc.
More than one library name could be specified.
Each would contain the user defined processing functions that can be utilized by this DataProc.
-o output_chan_name
is the name of the channel where processed data packets or exception messages generated by DataProc are sent. This
is typically used when an application wishes to receive time-corrleated measurements sent by an interface as
superpackets. See the Administrator's guide for a detailed explanation.
-n
tells DataProc to NOT distribute processed data packets and exception messages. Without this flag, DataProc will
distribute processed data packets and exception messages to any process which registers for them. If this flag is
specified, DataProc will not perform distribution. NOTE: If this flag is present, data WILL NOT be archived via the
standard methods.
-k kpath
specifies the value to be used for the KPATH environment variable. Default KPATH taken from the shell
environment.

-t table_name
is name of a realtime table used by DataProc. More than one table could be used. They would contain the descriptors
for all measurements that can be processed by this DataProc. Requires at least one realtime table; typically, that is the
"mdt" Maximum number of tables allowed is MAX_NUM_DATAPROC_TABLES.

DESCRIPTION
The DataProc is a Kernel process that is responsible for data conversion, compression(filtering), valid range
checking, max change checking, and exceptions checking for measurements.

Input to DataProc are in the form of linked_data packets which contain the raw values for the measurements. These
packets can come in singly or grouped together in a superpacket. This is the the structure for a superpacket:

struct super_packet {
 packet_hdr_t packet_header;
 linked_data_t raw_data_packet[...];
}

Raw measurement input is processed according to the DATA_PROCESSING_ OPTIONS defined in that
measurement's descriptor and according to its data type. The data types currently supported by DataProc are:
ANALOG, INTEGER, DISCRETE and BYTE_ARRAY.

Processing of the linked data produces processed_data packets. Exception_messages can also be generated as the
result of processing. For each exception packet, there must also be an accompanying processed_data packet if the
data is able to be processed. All processed_data packets and exception_messages generated for measurements that
came in as a super packet will be group together in an output super packet for distribution. If processing resulted in

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 132

only one processed packet, this packet will be transmitted without being packaged in a superpacket.

In the situation when the generated processed packets can not fit into one output super packet, they will be split into
several super packets.

Unrecognizable or invalid raw data are not processed. An invalid data exception message is generated for each valid-
>invalid transition.

DATA_PROCESSING_OPTIONS
For each measurement, various processing options can be enabled or disabled by using the configuration database to
change the measurement descriptor. Parameters associated with these options are also in the descriptor. This is how
DataProc operates when the option is enabled:

DATA_COMPRESSION - DataProc checks for whether the measurement had changed by a significant amount since
a last sample. The significant change criteria can be based on the raw value, the processed value or a percentage of
the processed value. If significant change criteria is not met, output of processed data packet is suppressed.

To avoid creeping significant changes that will not be detectable, the last sample used is the last one that had a
significant change.

STALE_DATA_CHECK - DataProc checks whether the raw value had changed. If it had not changed after a certain
number of cycles, the data is considered stale. It shall remain stale until the raw value changes. The number of cycles
or the stale sample threshold is defined by the user.

DATA_CONVERSION - applicable only to analog measurements. DataProc will convert the raw data value into a
processed data value based on the algorithm specified by the measurement's descriptor.

If the algorithm is POLYNOMIAL_CONVERT, the raw data is treated as an integer raw count value to be used with
the polynomial equation defined for that measurement to calculate the processsed value.

If not enabled, or if no conversion algorithm is specified, DataProc uses the raw data value as the processed data
value. The raw value is assumed to be in IEEE double precision floating point format.

If error is encountered when attempting the conversion, the CNVRT_ERR_BIT_MASK bit shall be set for the
measurement's status and its value is invalid.

VALID_RANGE_CHECK - DataProc verifies that the data sample does not exceed the defined upper or lower range
values. The criteria for valid range can be based on the raw value or the processed value. If one of these range values
is violated, the INVALID_RANGE_ERR status for the measurement is set and other exception checks will not be
performed. This option is not applicable to DISCRETE or BYTE_ARRAY measurements.

MAX_CHANGE_CHECK - DataProc verifies that the current data sample and the last sample's does not differ by
more than a defined delta value. The criteria for this delta value can be based on the raw value, the processed value or
a percentage of the processed value. If this condition is violated, the MAX_CHANGE_ERR status bit for the
measurement is set. This option is not applicable to DISCRETE or BYTE_ARRAY measurements.

LIMIT_CONDITION_CHECK - the processed value is used to verify that a certain condition had occurred. Each
condition is composed of a pair of limit logic definitions (limit, logic_condition). Normally, only one definition is
used to specify the limit condition. When the limit condition needs to be a range, the two definitions can be combined
via AND/OR relationship to specify it. The legal logic_conditions are: = , != , > , >= , < , <= .

If the processed value satisfies the condition then the LIMIT_CONDITION_ERR status bit for this condition is set
for the measurement's status.

There could be up to 8 such conditions per sample. DISCRETE data type can only have 1 limit condition with only 1
limit logic definition.

EXAMPLE

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 133

This is used to detect when measurement X's value is greater than 100: Condition 1: [limit_1 = 100, logic_cond_1:
'=']

This is used to detect when measurement X's value is between 20 and 50 inclusively: Condition 1: [limit_1 = 20,
logic_cond_1: '>='] AND [limit_2 = 50, logic_cond_2: '<=']

EXCEPTION MESSAGES
An exception packet is generated when there is a change in these status bits of the processed value:
INVALID_RANGE, MAX_CHANGE_ERR, LIMIT_CONDITION_ERR and DATA_STALE.

The exception packet contains the current and previous data statuses. It is up to the end-user to compare these
statuses to determine the cause(s) of the exception or to detect if an exception condition has returned to normal.

An exception packet is always accompanied by a processed data packet if the data was able to be processed.

DIAGNOSTICS
DataProc will terminate if input or output channel was not specified or if initialization was unsuccessful.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 134

NAME
Distributor - read packets from one channel and write them to all the channels that have registered to receive them
and to any channels specifically identified in the packet itself.

SYNOPSIS
Distributor -i input_channel_name [-k kpath]

DESCRIPTION
Distributor reads packets from the channel specified by input_channel_name and outputs the packets to all channels
that have registered to receive that packet via the function CDistCntl(). The packets are also written to any channels
that are specified in the distribution vector contained in the packet header.

OPTIONS
 -i input_channel_name
the channel from which packets will be read.
-k kpath
The Distributor process must have a kpath to assist in accessing the channels. The kpath may be specified on the
command line or by an environment variable named KPATH.

NOTES
If an input packet is a super packet which contains more than one subpacket, the super packet is separated into the
subpackets which are distributed individually.

RETURN VALUE
Upon normal termination, Distributor returns zero. Otherwise, an error message is output and one is returned.

SEE ALSO
CDistWrite(), CDistCntl()

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 135

NAME
HistRetrieve - provides historical retrievals for CCTK

SYNOPSIS
HistRetrieve [-i|v|q] [-D] [-s[s]] [-p path] [-o output_file] [-b start_time] [-e end_time] [-f filebase] parameter_file
[parameter_file ...]

DESCRIPTION
This process provides for the Historical retrieval of data archived by the ARS process. HistRetrieve works similarly
to NrtRetrieve. Please read the NrtRetrieve manpage for more details. Only the difference between it and
HistRetrieve will be described here.

HistRetrieve does not support the -t (timeout) option that NrtRetrieve does. If HistRetrieve is passed this option, it
will produce an error.

HistRetrieve supports two additional, although optional, arguments. The first, -p, indicates the path where
HistRetrieve should look for the historical archive files. If it is not specified, it defaults to the current directory. The
second, -f, indicates the base filename of the archive files. If not specified, this defaults to TAM.

The -s option is also different from NrtRetrieve. -s cause HistRetrieve to print out the statistics associated with a
historical retrieval. It displays the FD name, the earliest recorded measurement, the latest recorded measurement, and
whether or not compression was enabled. If a second -s option is given, it will additional print any information
known about the Fds in the archive.

RETURN VALUES
HistRetrieve supports the same error codes as NrtRetrieve. Please see it for a description.

SEE ALSO
NrtRetrieve

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 136

NAME
MeasMon - Generic Measurement Monitor for CCTK.

SYNOPSIS
MeasMon [-u update_rate] [file to load]

DESCRIPTION
MeasMon is short for Measurement Monitor. It is a generic interface for viewing measurements within CCTK.
MeasMon will allow the user to view any measurement in a neat tabular format.

MeasMon provides controls for the following:
Save/Load Files
Add/Remove FD’s from the tabular list
Freeze the display (stops updates)
Toggle between GMT/Local time

When saving and loading files, all valid information about the GUI is saved. This not only includes the list of Fds
being displayed, but also the fields being displayed, the width of the fields, the state of the time, and the format of the
time.

Note:
At this time, the user cannot change the format of the time field or the fields being displayed. These can only be
changed by hand modifying the saved file.

OPTIONS
 -u update_rate
 The update rate can be specified on the command line. The update rate states how long between each display update
cycle. The default is once per second.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 137

NAME
Message - notice processor

SYNOPSIS
Message

DESCRIPTION
Message is a kernel process designed to provide centralized notice generation and routing facilities. Message is to be
utilized by all kernel processes, and is available to any utility processes via the SendCond() interface function.

SendCond() will generate and transmit via communications channel to the Message process, a packet that can contain
one or several condition_notices (or a superpacket).

Each type of condition_notice has a corresponding notice descriptor definition in the notice table in the kernel real-
time table database.

Message will analyze the notice descriptor for the current condition_notice and perform processing appropriate for
the current notice descriptor definition.

Message's primary task is to generate and issue kernel system notices as directed by the condition_notice and its
notice descriptor. System notices may be routed to distribution, to the kernel system log, or both. Suppression of
system notice generation is also allowable.

Message will generate a system notice using a formatted text string contained in the notice descriptor.

System notice for condition_notices that are from the same input superpacket will also be kept together in the same
system notice superpacket for distribution.

The KPATH environment must be established prior to the execution of this process.

ARGUMENTS
None required.

DIAGNOSTICS
Message will terminate upon failure to acquire channel resources or notice table memory access.

SEE ALSO
Channel, SendCond

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 138

NAME
MonCon - Generic monitor and control application

SYNOPSIS
MonCon [-f] <drawing filename> [-i] [-u <data update rate>] [-r <display refresh rate>]

DESCRIPTION
The MonCon application provides a generic mechanism for binding graphical monitor and control functionality to
the measurements and command database.

OPTIONS
 -f drawing filename
Drawing filename to load. (the -f switch is optional)
-i input filename
Setup data filename associated with the drawing.
Note:
If a data filename is not specified then the data filename is assumed to be the drawing filename where any ".???"
extension is replaced by a ".dat".
-u data update rate
Data update rate in milliseconds (rate which data is polled). (Default: 1000 milliseconds or once per second)
-r display refresh rate
Refresh rate in milliseconds (rate which display is redrawn). (Default 100 milliseconds or ten times per second)
-geometry geometry
Specifies the initial size and location of the drawing.

See moncon_example.dat setup file located in the examples directory for details regarding application setup.

See libmoncon.a description for details regarding specific display and application functionality.

RETURN VALUES
If an error occurs during initialization or termination then MonCon exits with a value of -1. Otherwise, upon
successful termination a value of 0 is returned.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 139

NAME
MulticastServer - Generates packets based upon the MulticastProtocol developed for CCTK.

SYNOPSIS
MulticastServer [-a] [-m ADDRESS|HOST] [-p NUM|SERVICE] [-t NUM] [-l] [-r FLOAT] [-i NAME] [-P NAME]
[-s NAME] [-k PATH]

DESCRIPTION
MulticastServer will generate multicast packets for clients. The protocol used is described in the MulticastProtocol.h
header file in the CCTK include directory. MulticastServer provides two-way communications with the clients where
the clients can register for measurements to receive, interact with the server, and receive data. The multicast-address
and the multicast-port which the packets are sent out are specified on the command line.

The preferred way to specify the address is to place an entry in the hosts() file that references the correct IP address.
MulticastServer will use gethostbyname() to lookup the address. The preferred way to specify the port is to place an
entry in the services() file that references the correct port. MulticastServer will use getservbyname() to lookup the
port. Raw addresses and ports can be used as well as the lookup methods.

A time-to-live parameter can also be specified on the command line. This defines for how long this packet is allowed
to live on the internet, see multicast documentation for a further description of its meaning. This value should
ALWAYS be set to the default of 1 unless you are distributing packets via multicast to clients that are not on your
local network.

MulticastServer will receive measurement information and commands from CCTK. It will also receive requests via
multicast from the clients. These requests will cause MulticastServer to register for CCTK measurements. Each time
one of these measurements is received, it will packetized and distributed to the clients via multicast. For proper
command routing, the port-fd must be specified. MulticastServer will place its input channel distribution vector in the
specified port descriptor so that command routing occurs correctly. If no port descriptor is specified, MulticastServer
will not be commandable by the standard CCTK methods. The CCTK KPATH can also be specified using the
KPATH option.

Packet generation can be activated/deactivated in one of two ways. First, MulticastServer will respond to CCTK
commands that perform the task. Second, MulticastServer will respond to the UNIX signals TSTP and CONT. These
signals will cause MulticastServer to deactivate and activate packet generation respectively. The UNIX signals are
mainly useful in testing.

MulticastServer provides several debugging utilities. First, MulticastServer can ALWAYS be forced to output its
current set of status statistics by sending it the SIGHUP signal. Second, if debug is compiled in, a debug level can be
set upon startup. The debug level is from 1 to 5 with level 1 providing a minimum amount of data while level 5
produces large amounts of data. If debugging is specified and debugging is not compiled in, a warning message will
be generated.

MulticastServer can be shutdown by sending it a TERM or an INT signal.

OPTIONS
 -a
This flag determines the state that MulticastServer initializes in. If the flag is set, MulticastServer will come up and
immediately start sending packets. If the flag is not set, MulticastServer will need to receive a command before it
starts sending packets. This is an optional parameter. Multiple occurrences are ignored.

-i NAME
NAME will specify the input channel name to use. The input channel will be used by MulticastServer to receive both
registered measurement data and commands. It is an optional parameter. It may only be specified once. If it is not
specified, the NEXT_AVAIL_CHAN will be used.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 140

-k PATH
PATH will be used as the CCTK KPATH for this process. The path must contain a valid, running CCTK system. It is
an optional requirement. If KPATH is specified, the "KPATH" environment variable will be set to PATH. If KPATH
is not specified, KPATH will be retrieved from the "KPATH" environment variable. If the environment variable is
not present and KPATH is not set on the command line, an error will be generated.

-m ADDRESS|HOST
ADDRESS or HOST will establish the multicast address over which the data packets will be transmitted. It is an
optional parameter. It may only be specified once. It must either be a valid address of the format X.X.X.X or a valid
hostname that can be retrieved via gethostbyname() system call. It must be between the values of 224.0.0.0 and
239.255.255.255. If not specified, the default in the MulticastProtocol.h file will be used.

-p NUM|SERVICE
NUM or SERVICE will establish the multicast port over which the data packets will be transmitted. It is an optional
parameter. It may only be specified once. It must either be a valid port number or the name of a service which can be
retrieved by the getservbyname() system call. It must be greater than 0 and less then the maximum port allowable by
the system. If not specified, the default in the MulticastProtocol.h file will be used.

-P NAME
NAME will specify a port FD to use. The input channel of MulticastServer will be registered in the specified port-fd
so that commands are routed correctly. It is an optional parameter. It may only be specified once. If no port is
specified, then MulticastServer will not be commandable via the normal CCTK methods.

-r FLOAT
 FLOAT will establish the packet rate at which MulticastServer transmits packets. It is in Hz. It is an optional
parameter. It may only be specified once. It must be greater than 0.0 but less than 100.0, creating a maximum
transmit rate of 100 Hz. If packet-rate is not specified, it will default to 1.0. MulticastServer will transmit faster than
this rate if many measurement updates are received. MulticastServer only guarantees that it will at least transmit at
this rate.

-s NAME
NAME will specify the status channel name to use. The status channel will be the channel that status packets are sent
to. It is an optional parameter. It may only be specified once. If it is not specified, STDSTATUS will be used.

-t NUM
NUM will establish the time-to-live value placed in the header of each multicast packet. It is an optional parameter. It
may only be specified once. It must be greater than or equal to 1 and less than 255. If time-to-live is not specified, it
will default to 1.

-l
Enables the IP multicast loopback. This must be enabled if clients will be running on the same machine as the server.
Enabling this will increase the load on the server.

-d level
If this option is specified, MulticastServer will display debugging information. MulticastServer will display more
information as the debug level increases. Valid debug levels are from 1 to 5. Please note that a debug level above 2
will generate enormous amounts of data. It is possible that the debug code has been removed from the application. If
this is the case, then a warning message will be displayed and this option will be ignored. This option should mostly
be used for testing.

-h
This will produce a brief help listing on the use of MulticastServer.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 141

 DIAGNOSTICS
MulticastServer will exit with a 0 return code upon a successful termination. If any errors occur during initialization
due to incorrect arguments, it will exit with a 1. If any errors occur during initialization due to problems parsing the
mpd file, it will exit with a 2. If any errors occur during initialization due to problems setting up the system, it will
exit with a 3. If any unrecoverable errors occur during operation, it will exit with a 4.

Also, after communications have been established with CCTK, MulticastServer will send System Messages if any
critical or cautionary errors occur.

SEE ALSO
MulticastServer.h

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 142

NAME
NrtRetrieve - provides near real-time retrievals for CCTK

SYNOPSIS
NrtRetrieve [-i|v|q|] [-D] [-k kpath] [-o output_file] [-b start_time] [-e end_time] [-t timeout] parameter_file
[parameter_file ...]

DESCRIPTION
NrtRetrieve() is responsible for performing a near real-time retrieval for the CCTK system based upon a given
parameter file. NrtRetrieve will process each parameter_file listed on the command line in turn and perform a
retrieval based upon its contents.

Each parameter file must be of the correct format. The format for the parameter files are described in the retrieval
parameter file definition document. Please see that document for more details. If the -o option is specified, it
overrides any filenames specified in the parameter file. If a single parameter file is specified and the -o option is
specified, the output will be in the filename specified by -o. If multiple parameter files are specified and the -o option
is specified, the output will be in the filename specified by -o with a sequence number appended to the name. For
example, if three parameter files were specified, the output files would be:

output_file.0
output_file.1
output_file.2

 If the -b and/or -e options are used to specify a start/stop time, then they will override any times specified in the
parameter file. Simple checks will be done to ensure that the start time occurs before the stop time. An error will be
returned if this is not the case. If no start/stop times are specified, ARS will try to use the entire length of the existing
archive.

The -i, -v, and -q options are mutually exclusive. They determine the amount of feedback provided by NrtRetrieve to
the caller. Only one of these options may be specified on the command line. An error will be generated if more than
one is set.

NrtRetrieve will accept several signals. Whenever NrtRetrieve receives the CONT signal, it will attempt to continue
with the retrieval (unpause). Whenever NrtRetrieve receives the TSTP signal, it will attempt to pause the retrieval.
Finally, whenever NrtRetrieve receives the INTR signal, it will attempt to abort the retrieval.

OPTIONS
 -i
is used to indicate that the application is being called interactively on the command line. In this case, status on the
retrievals will be printed to the screen in a user friendly format. Displaying both % complete and number of samples
retrieved.
-v
is used to indicate that the application is being called by another application which desires feedback, but does not
need the user friendly, screen formatted, output produced by the -i option. In the -v mode, the following output will
be generated to standard out:

total:<number> – The number of retrievals for this session.
param:<pid>:<file_name> – This line will be sent each time processing on a new parameter file is started.
output:<file_name> – The name of the output file associated with the current parameter file.
state:<current_state>:<description of state> – This line will be sent each time the "state" of the retrieval changes.
Valid states are init, pause, exec, complete, fail, abort.
percent:<percent complete> – This line will be sent periodically to indicate the percentage of the retrieval that is
complete.
samples:<samples found> – This line will be sent periodically to indicate the number of samples found.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 143

 pid is the pid of the NrtProcess performing the retrieval. This pid can be used to send signals to the NrtRetrieve
process to pause/continue/abort the retrieval.

-q
is used to quiet all output. No status messages will be displayed to standard out. This option will find use in batch
retrievals. Error messages and codes will still be produced.
-T
is used to specify a timeout. The timeout is the maximum time to wait for a free archival slot before giving up.
-D
indicates that the input parameter file to NrtRetrieve is temporary and should be deleted once the Retrieval is
finished. This is a kludge to allow the tmp directory to be cleaned up.

RETURN VALUES
Upon successful completion of the retrieval(s), an exit code of 0 will be returned. If NrtRetrieve fails, one of the
following error codes will be returned to indicate the reason.

1. Invalid command line arguments.
2. Internal error occurred before attempting to initiate the retrieval.
3. This could be an indicator of several items, unable to read parameter file, unable to obtain necessary

resources, unable to communicate with the test in the specified KPATH.
4. Unable to initiate retrieval within the given timeout period. This typically indicates that the ARS subsystem

was too busy to handle the request.
5. Unable to start retrieval. This typically indicates that the ARS subsystem was "unable" to start the retrieval

request.
6. Error during retrieval. This indicates that the retrieval was started successfully, but an error occurred while

the retrieval was being processed.
7. Retrieval aborted. This indicates the retrieval was aborted by the user.

SEE ALSO
TamArs, HistRetrieve

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 144

NAME
PeerReceiver - Receives CCTK data across a network

SYNOPSIS
PeerReceiver [-d LEVEL] [-i NAME] [-o NAME] [-S NAME] [-k PATH] [-s] [-p] [-f]

[-P NAME | ([-m MODE] [-l ADRESSS] [-L PORT] [-r ADDRESS] [-R PORT])]

or

PeerReceiver -h

DESCRIPTION
PeerReceiver receives CCTK data packets across the network using either TCP or UDP sockets. This application is
typically used with PeerSender, but does not have to be. All types of CCTK packets can be received from processed
data packets to linked data packets to packet decom packets. In its most basic form, PeerReceiver only examines the
packet header of the packet and places the packet on the output channel so any and all future packets will be
supported as well. Special packets allow PeerReceiver to associate named measurements from the sender system to
named measurements on the local system. In addition, PeerReceiver also has the option to translate processed data
packets to linked data packets to allow processed data packets from one CCTK system to be processed by another.
The protocol used by PeerReceiver is open and thus anyone can read data sent by the process. The protocol is
documented in the PeerProtocol.h header file. Also see the CCTK Administrators Guide for more information on
configuring and using the PeerSender and PeerReceiver processes.

FD AND DATA TRANSLATION
PeerReceiver has several command line flags that controls how it translates data that it receives. PeerReceiver
receives CCTK packets via the Ethernet connection. Each packet contains a sid that is a unique identifier for the FD
for the project on the sender host. That sid may or may not be valid for the project running on the local, receiving
host. Three sid translation methods are available:

1) SID lookup translation
2) Direct FD translation
3) No translation

The first method, which is active if a port descriptor is specified on the command line, causes a lookup to occur. The
port descriptor defines a FD name mapping between FD names on the sender system and FD names on the local
system. Therefore, when a FD is received, a lookup is performed. If a match is found, the local sid found there is
used for the translation. This is the default translation if a port descriptor is defined. This method can be turned off by
specifying the -s flag.

The second method, which is active by default, causes a direct FD translation to occur. For each FD received from
the sender system, an FdToSid() is performed on the local system. The value returned by the FdToSid() call is used
as the local sid for that FD. Therefore, anytime a packet is receive with the sender sid, the local sid will be
substituted. The direct FD method will only be used if a translation using the first method fails. This is the default
translation if no port descriptor is defined. This method can be turned off by specifying the -f flag.

The third method, which is active if the -s and -f flags are set on the command line, causes no translation to occur. In
this case, it is assumed that the sids for FDs on the sender system match the sids for the FDs on the local system. This
is only true if the configuration databases on the two systems are identical.

MODES OF OPERATION
PeerReceivere can receive data in one of five modes of operation. The modes of operation are:

• Registration
• Point-to-Point
• Connectionless

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 145

• Broadcast
• Multicast

Each mode of operation indicates how the socket should be configured to receive the data. The only special action
taken by PeerReceiver based upon the mode is that in registration mode, a registration request will be made for each
FD listed in the port table.

CONFIGURATION
PeerReceiver can be configured through a port descriptor or using command line options. If a port descriptor is
specified (with the -P option), then it is not permissible to specify address information on the command (with the -l, -
L, -r, or -R options).

The port descriptor is populated via the CCTK configuration database. Please see the peer-to-peer documentation for
more information on configuring the PeerReceiver via the configuration database. The command line options are
described below.

OPTIONS
-f
This option indicates that direct FD translation should not be performed. See the section above on FD and data
translation for more information.

-i NAME
NAME will specify the input channel name to use. The input channel will be used by PeerReceiver to receive
commands. It is an optional parameter. It may only be specified once. If it is not specified, it will default to
NEXT_AVAIL_CHAN.

-k PATH
PATH will be used as the CCTK KPATH for this process. The specified path must contain a valid, running CCTK
system. It is an optional requirement. If kpath is specified, the "KPATH" environment variable will be set to PATH.
If kpath is not specified, kpath will be retrieved from the "KPATH" environment variable. If the environment
variable is not present and kpath is not set on the command line, an error will be generated.

-l ADDRESS
Specifies the local address to use for the socket. ADDRESS should be of the standard form x.x.x.x or a hostname
resolvable into an address using gethostbyname(). The local address is the address used to bind to on the sender host.
This is optional for all modes. If not specified, any address will be used. It may only be specified once.
-L PORT
Specifies the local port to use for the socket. PORT should be a standard number or a service resolvable into a port
using getservbyname(). This option is required for connectionless, broadcast, and multicast, optional for the other
modes. If not specified, any available port on the system will be used. It may only be specified once.
-m MODE
MODE indicates the mode of operation for PeerSender. Valid modes of operation include: registration, point-to-
point, connectionless, broadcast, and multicast. Each mode of operation requires different port and address
information. The chart provided in the description above indicates which arguments are required for which mode. A
further description of the modes of operation are provided above. This option cannot be specified more than once.

-o NAME
NAME will specify the output channel name to use. The output channel will be used by PeerReceiver to send data.
It is a required parameter for all modes. It may only be specified once.

-p
This option indicates that packet translation should be performed. See the section above on FD and data translation
for more information.

-P NAME

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 146

NAME will specify a port FD to use. The input channel of PeerSender will be registered in the specified port fd so
that commands are routed correctly. It is an optional parameter. It may only be specified once. If no port is
specified, then PeerSender will not be commandable via the CCTK system commands. If a port fd is specified,
address and port information will be retrieved from the port descriptor and an error will be generated if address and
port information is specified on the command line.

-r ADDRESS
Specifies the remote address to use for the socket. ADDRESS should be of the standard form x.x.x.x or a hostname
resolvable into an address using gethostbyname(). This option is optional for connectionless, broadcast, and
multicast. It is required by point-to-point and registration. It may not be specified more than once.
-R PORT
Specifies the remote port to use for the socket. PORT should be a standard number or a service resolvable into a port
using getservbyname(). This option is optional for connectionless, broadcast, and multicast. It is required by point-
to-point and registration. It may not be specified more than once.

-s
This option indicates that sid lookup translation should be performed. See the section above on FD and data
translation for more information. This option is only valid if a port descriptor is defined.

-S NAME
Use the given NAME for the status channel. The NAME must be a valid channel configured in the CCTK project
configuration. This option may only be specified once. It is an optional parameter. If not specified, STDSTATUS
will be used.

-d LEVEL
Sets the level of the debug output. Valid values are 1 through 5. Debug must be built into the application for this
option to have any affect. Level 1 provides critical message, level 2 provides configuration information, level 3
provides additional debug on failure conditions, level 4 provides function entry and exit message, and level 5
provides detailed information on application flow. This is an optional parameter, if not specified, debug will not be
displayed.

-h
Displays a terse list of the available options.

RETURN VALUES
PeerReceier will return SUCCESS if all goes well. It will return a positive value if an error occurs. 1 indicates an
argument error, 2 indicates a CCTK error, 3 indicates a socket error, 4 indicates a system error, 5 indicates a error
during execution, and 6 indicates an error during wrapup.

SEE ALSO
PeerSender

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 147

NAME
PeerSender -- Transmits CCTK data across a network

SYNOPSIS
PeerSender [-d LEVEL] [-i NAME] [-S NAME] [-k PATH] [-P NAME | ([-m MODE]

[-l ADRESSS] [-L PORT] [-r ADDRESS] [-R PORT])]

or

PeerSender –h

DESCRIPTION
PeerSender transmits CCTK packets across the network using either TCP or UDP packets. All types of CCTK
packets can be transmitted from processed data packets to linked data packets to packet decom packets. In its most
basic form, PeerSender only examines the packet header of the packet so any and all future packets will be supported
as well. The receiver of data can either be the CCTK PeerReceiver process or another process written by a user. The
protocol used by PeerSender is open and thus anyone can read data sent by the process. PeerReceiver is an
application that allows the data sent by PeerSender to be read into a different CCTK system on a different host. The
protocol is documented in the PeerProtocol.h header file. Also see the CCTK Administrators Guide for more
information on configuring and using the PeerSender and PeerReceiver processes.

MODES OF OPERATION
PeerSender can operate in one of five different modes of operation:

• Registration
• Point-to-Point
• Connectionless
• Broadcast
• Multicast

In registration mode, PeerSender will wait for an initial connection from a PeerReceiver on the specified local port.
When a connection is established, PeerSender will fork a new instance to handle the connection. The parent will
return to waiting on the specified local port for further connections. The local port is a required parameter. The child
will service the receiver. The receiver can "request" measurement data by sending registration request packets to the
PeerSender. It is also possible to "unregister" for measurements as well as request a list of valid measurements. In
this mode, only measurement and notice data can be passed from PeerSender to the receiver. In addition, the receiver
must register for all information it wishes to receive.

In point-to-point mode, PeerSender will await for an initial connection from a receiver on the specified local port.
When a connection is established, PeerSender will send all data received on its input channel to the PeerReceiver.
The local port is a required parameter. If the receiver closes the port, then PeerSender will wait for another
connection and repeat the cycle. In this mode, only a single receiver can receive the information.

In connectionless mode, PeerSender will send all data received on its input channel to a specified remote
address/destination port using datagrams. The remote address and destination port are required. In this mode, only a
single receiver can receive the information. Routers will typically forward UDP packets and thus this mode can be
used to send data to hosts on a different network segment.

In broadcast mode, PeerSender will send all data received on its input channel to a specified remote
address/destination port using datagrams. This mode differs from the connectionless mode in that the remote address
is a broadcast address and the broadcast option for the socket is set. If no remote address is specified,
"255.255.255.255" will be used by default. A remote port is required. In this mode, multiple receivers can receive
the same information. Broadcast data is not passed through routers so the sender and receiver must be on the same
network.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 148

In multicast mode, PeerSender will send all data received on its input channel to a specified remote
address/destination port using datagrams. This mode differs from the previous in that the remote address is a
multicast address and the multicast options for the socket are set. A remote address and port are required. In this
mode, multiple receivers can receive the same information. Routers can be configured to route multicast data and
thus this mode can be used to send data to multiple hosts on different network segments.

The above modes of operation provides a wealth of options to the user. Both stream (TCP) and datagram (UDP)
connection options are provide so that a user may choose the protocol that best suits their application. TCP has
guaranteed reliability but increases overhead. UDP is not guaranteed but decreases overhead. On dedicated
networks, in practice, UDP is as reliable as TCP.

The following table should aid in configuring PeerSender. It indicates which port and address arguments are required
for the different modes of operation.

Local Address Local Port Remote Address Remote Port
Registration optional required ignored ignored
Point-to-Point optional required ignored ignored
Connectionless optional optional required required
Broadcast optional optional optional required
Multicast optional optional required required

CONFIGURATION
PeerSender can be configured through a port descriptor or on the command line options. If a port descriptor is
specified (with the -P option), then it is not permissible to specify address information on the command (with the -l, -
L, -r, or -R options).

The port descriptor is populated via the CCTK configuration database. Please see the peer-to-peer documentation for
more information on configuring the PeerSender via the configuration database. The command line options are
described below.

OPTIONS
-i NAME
 NAME will specify the input channel name to use. The input channel will be used by PeerSender to receive both
data and commands. It is a required parameter when operating in point-to-point, connectionless, broadcast, or
multicast mode. It is an optional parameter when operating in registration mode. It may only be specified once. If it
is not specified, it will default to NEXT_AVAIL_CHAN.

-k PATH
PATH will be used as the CCTK KPATH for this process. The specified path must contain a valid, running CCTK
system. It is an optional requirement. If kpath is specified, the "KPATH" environment variable will be set to PATH.
If kpath is not specified, kpath will be retrieved from the "KPATH" environment variable. If the environment
variable is not present and kpath is not set on the command line, an error will be generated.

-l ADDRESS
Specifies the local address to use for the socket. ADDRESS should be of the standard form x.x.x.x or a hostname
resolvable into an address using gethostbyname(). The local address is the address used to bind to on the sender host.
This is optional for all modes. If not specified, any address will be used.

-L PORT
Specifies the local port to use for the socket. PORT should be a standard number or a service resolvable into a port
using getservbyname(). This option is required for point-to-point and registration, optional for the other modes. If
not specified, any available port on the system will be used.

-m MODE
MODE indicates the mode of operation for PeerSender. Valid modes of operation include: registration, point-to-
point, connectionless, broadcast, and multicast. Each mode of operaton requires different port and address

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 149

information. The chart provided in the description above indicates which arguments are required for which mode. A
further description of the modes of operation are provided above.

-P NAME
NAME will specify a port fd to use. The input channel of PeerSender will be registered in the specified port fd so
that commands are routed correctly. It is an optional parameter. It may only be specified once. If no port is
specified, then PeerSender will not be commandable via the CCTK system commands. If a port fd is specified,
address and port information will be retrieved from the port descriptor and an error will be generated if address and
port information is specified on the command line.

-r ADDRESS
Specifies the remote address to use for the socket. ADDRESS should be of the standard form x.x.x.x or a hostname
resolvable into an address using gethostbyname(). This option is required for connectionless and multicast, it is
optional for broadcast, and it is ignored by point-to-point and registration. For broadcast, it defaults to
255.255.255.255.

-R PORT
Specifies the remote port to use for the socket. PORT should be a standard number or a service resolvable into a port
using getservbyname(). This option is required by connectionless, broadcast, and multicast. It is ignored by point-to-
point and registration.

-S NAME
Use the given NAME for the status channel. The NAME must be a valid channel configured in the CCTK project
configuration. This option may only be specified once. It is an optional parameter. If not specified, STDSTATUS
will be used.

-d LEVEL
Sets the level of the debug output. Valid values are 1 through 5. Debug must be built into the application for this
option to have any affect. Level 1 provides critical message, level 2 provides configuration information, level 3
provides additional debug on failure conditions, level 4 provides function entry and exit message, and level 5
provides detailed information on application flow. This is an optional parameter, if not specified, debug will not be
displayed.

-h
Displays a terse list of the available options.

DIAGNOSTICS
PeerSender will return SUCCESS if all goes well. It will return a positive value if an error occurs. 1 indicates an
argument error, 2 indicates a CCTK error, 3 indicates a socket error, 4 indicates a system error, 5 indicates a error
during execution, and 6 indicates an error during wrapup.

SEE ALSO
PeerReceiver

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 150

NAME
PktDcom - The generic packet decommutation process

SYNOPSIS
PktDcom -i Input_Chan_Name -o Output_Chan_Name [-MkDh]

DESCRIPTION
The PktDcom process reads packets for decommutation from its input channel (Input_Chan_Name). The PktDcom
process decommutates the packet data and sends linked data packets to its output channel (Output_Chan_Name) for
further data processing (e.g. DataProc).

The input packets are single packet_dcom_pkt_t packets or CCTK superpackets
(PACKET_DCOM_SUPER_PKT_TYPE) consisting of packet_dcom_pkt_t subpackets
(PACKET_DCOM_PKT_TYPE).

The subpacket header contains a SID that references a packet decommutation descriptor. The subpacket data consists
of raw data to be decommutated and flags that control the decommutation.

The subpacket header SID references a packet_dcom_des_t packet decommutation descriptor
(PACKET_DCOM_DES_TYPE) in the Link Descriptor Table (LDT). The packet decommutation descriptor consists
of link_SID_rec_t link SID records that define the decommutation parameters for the packet measurements.

The subpacket data decommutation flags control optional processing of the subpacket raw data. Flags exist to control
raw dump processing as well as measurement list processing.

The subpacket data raw data consists of an array of bytes to be decommutated according to the link SID records in
the packet decommutation descriptor.

OPTIONS
 -i Input_Chan_Name
The Input_Chan_Name is a required text string command line argument. The Input Channel is the channel where
PktDcom receives its input packets. The input packets contain raw data blocks to be decommutated.

-o Output_Chan_Name
The Output_Chan_Name is a required text string command line argument. The Output Channel is the channel where
the raw measurement packets are distributed. The output packets contain individual raw decommutated
measurements.

-M Max_Superpkt_Ratio
The Max_Superpkt_Ratio is an optional integer greater than zero that indicates the maximum number of input
superpackets to process before an output superpacket should be sent. The Max_Superpkt_Ratio default value causes
an output superpacket to wait until it is full before it is sent.

-k KPATH_Name
The KPATH_Name is an optional text string command line argument. The KPATH Name specifies the value to be
used to set the KPATH environment variable. The KPATH environment variable is a required environment variable.
The existing KPATH environment variable will be used as a default if one is not specified on the command line.

-D Dbg_Level
The -D option will enable debug mode. Debug mode causes verbose messages to be printed to a debug file in the log
directory. The debug filename is DEBUG.PktDcom.### where ### is the PktDcom process ID. The Dbg_Level is an
optional integer between 0 and 5 that determines how verbose the messages will be. Level 5 is most verbose.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 151

-h
The -h option will print a help message to the screen. The help message indicates the current default values of the
optional command line arguments.

RETURN VALUES
The PktDcom process returns SUCCESS_EXIT to the invocation environment if process initialization and
termination was successful. One of the following values is returned to indicate the reason for failure if an
initialization or termination error occurs:

 OPT_ARG_INIT_EXIT_ERR Error processing command line arguments.
 CCTK_INIT_EXIT_ERR Error establishing CCTK Kernel resources.
 CONFIG_INIT_EXIT_ERR Error configuring Unix resources.
 STATUS_INIT_EXIT_ERR Error updating process status.
 PROC_STATE_EXIT_ERR Error occurred after initialization.
 CCTK_TERM_EXIT_ERR Error terminating CCTK Kernel resources.

SEE ALSO
DataProc, PktDcomIfDefs.h

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 152

NAME
RetGraceGenPlot - Generates a grace plot from a retreival file.

SYNOPSIS
RetGraceGenPlot <retrieval_file>.delim

DESCRIPTION
RetGraceGenPlot is normally called by RetMon when a user requests a plot of retrieved data. It is possible, however,
to call RetGraceGenPlot by hand on an existing file of retrieved data. RetGraceGenPlot MUST operate on the
delimited version of the retrieved data. This is the retrieved data file with the .delim extension. Otherwise, the usage
is simply:

 RetGraceGenPlot <retrieval_file>.delim

After the data is processed by the script, grace will run and the plot will be visible.

SEE ALSO
RetGraceParseFd

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 153

NAME
RetGraceParseFd - Parses FD data from a delimited file and formats it for ingestion by the grace plotting tool.

SYNOPSIS
RetGraceParseFd <retreival_file>.delim <fd_name>

DESCRIPTION
RetGraceParseFd is used to correctly format measurement data contained within a retrieval file for ingestion by
grace. RetGraceParseFd will generate a stream of data on standard out for the given fd_name that is formated
correctly for grace to read in via a pipe. Currently, this script is used by RetGraceGenPlot, but it can be used by a
user. The correct syntax of a grace command using this utility is:

 xmgrace -source pipe -nxy "RetGraceParseFd <retreival_file.delim> <fd_name>"

Other options to control the format of the graph may be necessary. In addition, if the fd_name and/or file contains
spaces, it may be necessary to correctly quote escape and quote the fd_name and/or file.

SEE ALSO
RetGraceGenPlot

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 154

NAME
Retriever - graphical front-end to CCTK retrievals

SYNOPSIS
Retriever -- [-k KPATH]

DESCRIPTION
Retriever is a graphical front-end to the CCTK retrieval. Retriever has the following features:

ability to save/load parameter files.
ability to specify measurements/commands to retrieve.
ability to specify time ranges to retrieve.
ability to specify measurement details.

OPTIONS
The only option that Retriever accepts at this time is -k. The -k option will specify the location of the CCTK kernel.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 155

NAME
SetSystemState -- Set the CCTK project state.

SYNOPSIS
SetSystemState [-m mode_info] [-t test_description] [-k kpath] [-u user_notes] <-s new_state>

DESCRIPTION
SetSystemState is a simple application used to set the current state and associated state information of a CCTK
project. Options are available to set the project description (-t), the user notes (-u), and mode information (-m). The
new state is given using the -s option. The new state must be one of the valid CCTK states (DOWN,
STARTING_UP, UP, SHUTTING_DOWN, DOWN, FORCED_DOWN. Typically, SetSystemState will be used to
force a test down after a system failure.

The SetSystemState application must know the location of the system_state.xml file. The following rules determine
where SetSystemState will find the system_state.xml file:

• If -k is specified, the application will look for "system_state.xml" in that directory.
• If -k is not specified, the application use the contents of the KPATH environment variable as the directory

where "system_state.xml" should exist.
• If KPATH is not set, then the application will search the current directory. If a "system_state.xml" file

exists there, it will be used, but a warning will be displayed.
• If all of the above fail, an error message will be generated.

OPTIONS
-h
Displays the short help on the use of SystemState.

-m mode_info
Sets the mode information in the system_state.xml file.

-t test_description
Sets the project description in the system_state.xml file.

-k kpath
Search for "system_state.xml" in the given directory.

-u user_notes
Sets the user notes in the system_state.xml file.

-s new_state
Sets the system state to the given state.

SEE ALSO
ClearSystemStateOnBoot, SystemState

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 156

NAME
SimGui - graphical user interface to the simulation scripting language

SYNOPSIS
SimGui -- -version SimGui [-k kpath] [-c command file ...] [-m measurement file ...] <script file>

DESCRIPTION
SimGui is a graphical user interface to the simulation scripting language. It provides an easy-to-use interface into
many of the features of the simulation scripting language for users not wishing to learn the details of the language
themselves.

If the -k option or if the KPATH environment variable is set, the SimGui will attempt to load command and
measurement data from the specified kpath directory.

Note:
command and measurement data files are cumulative, all available command and measurement data files will be
loaded if possible, this includes those in the kpath and any specified on the command line. Command and
measurement data files are the GUIs link to CCTK. They are used only for user reference and are not required to run
the simulation GUI.

For more information on the usage of SimGui, please see the on-line help.

OPTIONS
 --
 This is a required command line argument to indicate the start of local arguments. If this is ommitted, the -c option
will be interpreted by the Tcl interpreter and an error will be produced.

script file
 The user can specify a simulation file to load on the command line.

-k kpath
 If a kpath is specified, the simulation GUI will attempt to load command and measurement information from that
kpath.

-c command file
 The user can specify a file that contains the list of valid command FD’s in the system that is being simulated. This
list is then used to prompt the user for valid commands. This argument is optional.

-m measurement file
 The user can specify a file that contains the list of valid measurement FD’s along with description and limits for the
system that is being simulated. This list is then used to prompt the user for valid measurements and provide
information on those measurements. This argument is optional.

–version
 This option will display version and copyright information

 SEE ALSO
SimEngine, Simulation Tutorial, Simulation Language Reference

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 157

NAME
SimpleHist - perform a simple historical retrieval

SYNOPSIS
SimpleHist [-rpm] [-l path] [-f filebase] [-b start_time] [-e end_time] -o output_file fd [fd ...]

DESCRIPTION
SimpleHist will perform a simple historic retrieval based upon a set of command line arguments. It gives developers
and users a simple, fast, convient way to perform retrievals. It does not provide an interface to all of the features of
retrieval, for more complex retrievals, use parameter files.

NOTE: the start time and stop time specified to SimpleHist is of a different format than that used by HistRetrieve.
HistRetrieve uses the archive "restrictive" format of "YYYY/DDD/HH:MM:SS.MMM". Any time format other than
that passed to HistRetrieve will fail. Since SimpleHist(), is, simplier. It uses a simplified time entry scheme. Any time
valid for the Tcl "clock scan" command will work. Therefore, for most normal uses, you only need to specify
HH:MM:SS. SimpleHist() will automatically convert to the more restrictive format for you.

OPTIONS
 -r
retrieve raw data (can be used with -p).
-p
retrieve processed data (can be used with -r).
-m
retrieve system messages.
-b
start time (optional, will default to beginning of archive).
-e
stop time (optional, will default to end of archive).
-l
path (optional, will use current directory if not specified).
-f
filebase (optional, will use TAM if not specified).
-o
output file name.
fd
a list of fds to retrieve, all data for a particular FD will be retrieved. Both commands and measurements can be listed
here.

 If no options are specified, the default is to do a processed retrieval for the entire archive. At least one FD should be
specified and an output file.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 158

NAME
SimpleNrt - perform a simple near real-time retrieval

SYNOPSIS
SimpleNrt [-rpm] [-b start_time] [-e end_time] -o output_file fd [fd ...]

DESCRIPTION
SimpleNrt will perform a simple near real-time retrieval based upon a set of command line arguments. It gives
developers and users a simple, fast, convient way to perform retrievals. It does not provide an interface to all of the
features of retrieval, for more complex retrievals, use parameter files.

OPTIONS
 -r
retrieve raw data (can be used with -p).
-p
retrieve processed data (can be used with -r).
-m
retrieve system messages.
-b
start time (optional, will default to beginning of archive).
-e
stop time (optional, will default to end of archive).
-o
output file name.
fd
a list of fds to retrieve, all data for a particular FD will be retrieved. Both commands and measurements can be listed
here.

 If no options are specified, the default is to do a processed retrieval for the entire archive. At least one FD should be
specified.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 159

NAME
StatMon - monitor kernel process status

SYNOPSIS
StatMon [kpath]

DESCRIPTION
StatMon is an interactive display of the current status of the kernel processes. StatMon must have a kpath to assist in
accessing the status shared memory segment. The kpath may be specified on the command line or by an environment
variable named KPATH. StatMon has a help screen which lists the options the user may enter to control the StatMon
display. Hit the "h" key to display the help screen.

RETURN VALUES
Upon normal termination, StatMon returns zero. Otherwise, an error message is output and one is returned.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 160

NAME
SysMsgGui

SYNOPSIS
SysMsgGui -- [-l] [-e] [-d time|criticality] [-k kpath] [-f message_file] [-m message_list]

DESCRIPTION
SysMsgGui is the System Message Graphical User Interface for the CCTK system. It provides a flexible, convenient
way for a "user" to view and examine incoming system messages.

See the user documentation for the use of the system message GUI.

OPTIONS
 -l
This option will cause the system message GUI to load the entire contents of the message file rather than seeking the
end of the file. If the system has been running for a long time or has experienced a lot of errors, this could possibly
dump thousands of errors into the system message GUI adversely affecting performance.

-e
If this option is enabled, the GUI will disable all "exit" capabilities via the GUI. This will not disable any of the
window manager capabilities, but should prevent a naive user from "exiting" the application.
-d time|criticality
This controls the display mode in which the system message GUI will initialize. If t or time is specified, the default
display is a single time sorted pane (this is the default). If c or criticality is specified, the default is a three paned
window sorted by criticality.
-k kpath
The user can optionally specify the KPATH. If this is not specified, the KPATH will be retrieved from the
environment.

-f message_file
The file that contains the messages. SysMsgGui will watch this file. As messages are added to the file, SysMsgGui
will read messages from the file and display them to the screen. If not specified, KPATH/log/system_messages.d is
used.

-m message_list
The file that contains the list of "valid" messages. This is used as an aid to the user when building filters. It is
necessary to allow a user to correctly create filters. If not specified, KPATH/msglist is used.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 161

NAME
SystemState – Query the current state of a CCTK test

SYNOPSIS
SystemState [-k kpath] [-s] [-c] [-i] [-p num|-d]
 or
 SystemState -h

DESCRIPTION
SystemState is a simple application used to query the current state of a CCTK test and modify the state history of the
test. There are three categories of information that can be returned by SystemState. The -s flag returns information
about the current state. The -c returns information about the current configuration. The -i flag returns information
about the state history. Multiple flags can be specified. Data will always be return in the following order: current
state, current configuration, and state history, regardless of the order of the command line flags.

SystemState can modify the state history of the test through the -p and -d flags. The -p and -d flags are mutually
exclusive. Only one may be specified on the command line. -p is used to prune the history. -d is used to delete the
history list entirely. If -p is specified, an argument is required that indicates the number of elements that will remain
after pruning.

The SystemState application must know the location of the system_state.xml file. The following rules determine
where SystemState will find the system_state.xml file:

If -k is specified, the application will look for "system_state.xml" in that directory.
If -k is not specified, the application use the contents of the KPATH environment variable as the directory where
"system_state.xml" should exist.
If KPATH is not set, then the application will search the current directory. If a "system_state.xml" file exists
there, it will be used, but a warning will be displayed.
If all of the above fail, an error message will be generated.

OPTIONS
 -h
 Displays the short help on the use of SystemState.
 -s
 Display the current state of the test.
 -c
 Display the current configuration of the test.
 -i
 Display the state history of the test.
 -k kpath
 Search for "system_state.xml" in the given directory.
 -p num
 Prune the state history, leaving num elements remaining.
 -d
 Remove the entire state history list.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 162

NAME
TamArs - Temporary Archive Media Archival and Retrieval Services

SYNOPSIS
TamArs [-a archive_channel] [-f ars_config_file] [-k kpath]

DESCRIPTION
TamArs provides archival and retrieval capabilities for real-time data processed by the CCTK system. Data to be
archived is sent to this process via the archive_channel. The data packets received are bundled into archive buffers
and written to the archive media. Data which has been recorded to the archive media may be retrieved and formatted
into textual reports, or may be graphically displayed using COTS products.

This process writes the archived data to a temporary archive on a local hard disk. This process also passes the archive
buffers to the Pam Archive process, so that the data may be saved on permanent removable media (such as an optical
disk or DAT tape). The temporary archive is used for near real-time retrievals. If the temporary archive becomes full,
the oldest data in the archive is overwritten by the new data (i.e., the temporary archive acts like a circular buffer).
Data written to the temporary archive can be retrieved until the data is overwritten (by the archive "wrapping" when
it becomes full) or until a new temporary archive is created. Currently, a new temporary archive is created each time
the TamArs process is initialized/started. In future EVOs, a new temporary archive will be only created when a test is
run with a different data base than the previous test. Data from previous tests and those using a different data base
can be retrieved from the permanent archive media. In general, retrievals from the temporary archive media provide
faster access to the archived data than retrievals from the permanent archive. If a disk error occurs writing to the
temporary archive, recording to the temporary archive stops; however, the data already written to the archive can still
be retrieved.

TamArs interfaces with the Archive Control process via shared memory for requests to start and stop the archival
activity. It notifies the Pam Archive process of data to be archived via a channel. It also interacts with the Retrieval
GUI via shared memory, for requests to initiate, pause, resume, and terminate retrievals.

TamArs tracks updates to FD’s, so that the correct FD data is output by Retrievals for FD’s updated after the archive
processing begins.

OPTIONS
 -a archive_channel
This parameter is optional. Data to be archived by TamArs is sent via this channel. If this parameter is not specified,
it defaults to STDARCH.
-f ars_config_file
This parameter is optional. If present, it specifies a disk file containing parameters which modify (override) default
values used by TamArs. See ars_config(9D) for a list of the default values which may be overridden.

-k kpath
This parameter is optional. The TamArs process must have a kpath to assist in accessing the channels and shared
memory tables. If not specified on the command line, the value is obtained from an environment variable named
KPATH.

RETURN VALUES
If an error occurs during initialization, an error message is output and TamArs exits. Otherwise, TamArs runs until a
terminate signal is received.

SEE ALSO
ArchiveControl, PamArchive, ars_config, Retrieval

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 163

NAME
ProjectManager - Manages a CCTK project

SYNOPSIS
ProjectManager [-f configuration_file] [-k kpath] [-n user_notes] [-i|-v|-q] [-u mode|-d]

DESCRIPTION
ProjectManager performs activities associated with managing a CCTK project. These activities include:

Creating the needed kernel resources.
StartUp of core kernel processes.
Monitor of core kernel processes.
Monitor of user initiated processes.
ShutDown of the project.
Updating the system_state.xml file.

More details on each of the above tasks is provided below.

ProjectManager will behave differently depending on how it is executed. These behaviors include:
StartUp or ProjectManager -u
 With this behavior, ProjectManager will start the project in the given mode. If no mode is given, the default
mode listed in the configuration file will be used. After the system has been started successfully, ProjectManager
will continue on with its monitor and shutdown tasks.
ShutDown or ProjectManager -d
 With this behavior, ProjectManager will assume that a project is running in the given kernel path directory and
will attempt to terminate the project. It will clean up all resources found. It will kill any process associated with
the project that is still running.

ProjectManager will read in a configuration file to determine how to configure CCTK. This configuration file
defaults to the name project_config.xml. The default name can be overridden on the command line by using the -f
option. See the associated documentation for a detailed description of this file.

ProjectManager also needs to identify a KPATH where important project information will be stored. The kernel path
is typically defined by the environment variable KPATH, however, it can be defined in several other ways. The
following describes the order of precedence used by ProjectManager to identify a KPATH. The first item found in
this list will be used.

The command line option, -k.
The environment variable, KPATH.
The kernel path specified in the configuration file.
The current directory.

STARTUP DETAILS
When ProjectManager is tasked with starting the system, it will perform the following steps:

Verify there is no project operating in the current directory.
Create a new UNIX session.
Change the state of the system to STARTING_UP.
Find and parse the project_config.xml configuration file.
Create environment variables specified in the configuration file.
Create the CCTK status block.
Create shared memory specified in the configuration file.
Create message queues specified in the configuration file.
Create channels specified in the configuration file.
Execute the processes listed in the configuration file.
Verify that all processes transition correctly to the running state.
Detach from the controlling terminal and move to the background.
Change the state of the system to UP.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 164

If any of the above tasks fail, ProjectManager will "undo" the steps it has completed thus far and then change the
state of the system to STARTUP_FAILED.

ProjectManager will track the pids of all critical processes it starts. It stores this list of pids for later use during
monitoring activities.

MONITORING DETAILS
After completing the startup tasks, ProjectManager will monitor the running CCTK system. ProjectManager will
perform the following monitor tasks, once per update cycle:

Call waitpid() to see if any of the critical processes have exited.
Evaluate the operational state of all running processes. Flag any non-responsive process as TARDY or AMUCK.

SHUTDOWN DETAILS
ProjectManager will shutdown a CCTK project when it receives the SIG_KTERM signal. At the time of shutdown,
the following tasks will be performed:

Change the state of the system to SHUTTING_DOWN.
The system status block will be updated to indicate that the system is shutting down.
Using the waitpid() call, allow all child processes to exit. Continue until all child processes exit or a given time
period passes without any child exiting.
The PROC directory will be searched. For each entry remaining in the PROC directory, the following algorithm
will be used:
 If the process is still alive (determined with kill -0):
 If the process was started by this ProjectManager:
 Send a TERM signal to the process.
 If the process is still alive (determined with kill -0):
 Send a KILL signal to the process.
 EndIf
 Remove the PROC directory entry if it still exists.
 EndIf
 Else
 Remove the PROC directory entry.
 EndIf

Remove the configured channels.
Remove all remaining message queues.
Remove all remaining shared memory segments.
Remove the CCTK status block.
Change the state of the system to DOWN.

DISPLAY OUTPUT
ProjectManager will operate in one of three output modes. They are quiet (-q), verbose (-v), and interactive (-i). Quiet
will generate no output except for critical errors. Interactive will generate output in a user-friendly format. Interactive
should be used when a user manually executes the ProjectManager command. Verbose is used to provide detailed
information in a easily-parsed format to an application that is communicating with ProjectManager via a pipe.
Typically, if ProjectManager is started by another application, say SystemControl, the verbose option will be used. If
ProjectManager is started at the shell, then interactive will be used.

ProjectManager will use stty() to check and see if it is attached to a terminal. If it is, it will default to interactive.
Otherwise, it will default to verbose.

Regardless of the mode, once the system is placed in the running state, ProjectManager will fork and place itself in
the background, returning control to the calling process. This is done so that if the controlling process aborts, the
CCTK project will not be taken down as well.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 165

OPTIONS
 -d
Indicates the ProjectManager should be run in "ShutDown" mode and that the project resources associated with the
current KPATH will be cleaned up.
-f configuration_file
Specifies a configuration file to use. This overrides the default configuration file of project_config.xml.
-h
Lists the available options for ProjectManager.
-i
ProjectManager will operate in user interactive mode. This assumes that a user initiated the command from the
command prompt. If stty() returns true, this is the default mode. Details on the startup will be displayed in a user
readable format.

-k kpath
Specifies a kpath to use which will override all other possible kpaths.
-n user_notes
Specifies "user_notes" to place inside the system_state.xml file. If this option is not specified, then no user notes will
be placed in system_state.xml.
-q
ProjectManager will operate in quiet mode. Only critical errors will be reported.
-u mode
Indicates that ProjectManager should be run in "StartUp" mode and that the CCTK project should be started. The
mode is optional. This indicates which mode to select from the configuration file. If no mode is given, the default
listed in the configuration file will be used.
-v
ProjectManager will operate in verbose mode. This assumes that another process is communicating with
ProjectManager via a pipe. Details on the startup will be displayed in an easy to parse machine format.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 166

NAME
csim - CCTK version of the simulator

SYNOPSIS
csim [-e|s] <-o output_channel> [-i input_channel] [-p port_fd [-p port_fd] ...] [-k kpath] [script_file ...] csim -h

DESCRIPTION
csim is the command used to run the CCTK version of the simulator. The CCTK simulator will accept all the core
modules and produce output in the form of CCTK linked data packets.

The output_channel is a required parameter. This indicates the name of the output_channel to which all linked data
packets will be written.

The input_channel is optional. An unlimited number of input channels may be specified. The simulator will attempt
to read commands from each input channel once during each of its processing cycles.

csim has command capabilities. If a command is received, the appropriate command module will be messaged
through the IssueCommand() method. csim will register for commands in the port descriptor for each port fd
specified on the command line. Multiple ports can be specified. The registered input channel will always be a next
available channel.

The user can optional specify the kpath which indicates where the CCTK configuration is found. If kpath is not
specified, the process will query the KPATH environment variable.

csim also has the capability of using either an internal timer that is managed by this instance of the simulator or an
external timer that is managed as part of CCTK. With no arguments, the internal timer is used. If the -e argument is
specified, the external timer is used, as long as no errors occur. Or, if the -s argument is specified then the simulator
will be capable of simulating and propogating time to CCTK as well.

Finally, the user can specify a script file. If a script file is specified, the simulation commands in that script file are
processed. If no script file is specified, then csim will enter an interactive mode and accept input from the user via a
command line.

If -? or -h is specified, help information will be displayed.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 167

NAME
dsim - Debug version of the simulator

SYNOPSIS
dsim [-o output file] [script file]

DESCRIPTION
dsim is the command used to run the debug version of the simulator. The debug simulator will accept all the core
commands and produce output to either standard out or a file. If a file is specified on the command line, all output
will be redirected to that file. If no file is specified, output will be directed to standard out.

dsim will display a single line each time the update cycle starts and/or ends. An additional message will be displayed
for each measurement that changes.

dsim has no command capabilities and simply displays a message when the CheckForCommands() method is
messaged.

If dsim is called with a script file specified, dsim will process all commands contained within the script file. If no file
is specified, dsim will enter an interactive mode and accept input from the user via the command line.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 168

NAME
gsim – Glg version of the simulator

SYNOPSIS
gsim -s <server name> [script file]

DESCRIPTION
gsim is the command used to run the glg version of the simulator. The glg simulator will accept all the core
commands. Changes to the simulated measurements will cause the appropriate resources to update at the glg server
specified by <server name>.

gsim has no command capabilities.

If gsim is called with a script file specified, gsim will process all commands contained within the script file. If no file
is specified, gsim will enter an interactive mode and accept input from the user via the command line.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 169

GLOSSARY

The following terms and abbreviations are used throughout the CCTK documentation set:

Actor – Command and measurement models used in CCTK simulation.

Actor groups – Collections of actors.

Analog measurement – Measurement data that is represented as a continuously variable
quantity.

ANSI – American National Standards Institute. See http://www.ansi.org/

API – See Application Programming Interface.

Application programming interface – A library of functions and associated data structures
that allows application software to link with CCTK.

ARS – Archive and Retrieval Subsystem.

BDT – Bus Descriptor Table.

CCB – See Channel control block.

CCT – Command and Control Technologies Corporation.

CCT_HOME – Environment variable that specifies the installation directory of CCTK.

CCTK – Command and Control Toolkit.™

CCTK Client – The general reference to the program CctkClient, which is the main user
interface for operating CCTK.

CCTKPROJECTLABEL – An environment variable that specifies an alternate term for a
CCTK project.

CDB – See Configuration Database.

CDT – See Command Descriptor Table.

Channel – A channel is a means of interprocess communications. There are two types of
channels, private and public. A private channel is an exclusive point-to-point connection
between two processes. Private channels do not go through a distributor. A public channel is
one to which any process can write.

Channel control block – An area of memory contained within the channel shared memory
block that stores state information related to the channels configured in a particular instance
of CCTK.

http://www.ansi.org/

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 170

Client – Any process that requires services from another process within CCTK.

Command – A command represents a control input to an end item or operational system. The
characteristics of a command are defined in command descriptions.

Command Descriptor Table – Contains information, including name and attributes,
associated with system commands.

Command Response – The data sent in response to a command.

Condition Notice – A condition notice is the set of static attributes of a system message
defined in the configuration database. Condition notices do not “occur.” There is no temporal
aspect associated with a condition notice and they are not passed around the system. There are
a set number of condition notices defined for each project. A condition notice is analogous to
a “class” and a system message is analogous to an “object” of that class. When a system
message is generated, a instance of a condition notice is instantiated in the system.

Configuration Database – Persistent configuration repository for all measurement
parameters, command parameters, and interface specifications within CCTK.

Configuration Descriptor – A configuration record or object.

Configuration Item – A configuration item is a hardware or software entity, or an
aggregation of both, which is designated for configuration management. Each configuration
item has a unique set of function and/or physical attributes.

DAC – Data acquisition; see PCM data acquisition application.

Data Compression – Filtering of data to reduce bandwidth requirements.

Data Conversion – Linearization and end conversion of data.

Data Retrieval Request – Request for near real-time or permanent archived data.

Descriptor – A single named object within CCTK.

Discrete Measurement – Measurement data that is represented as one of two discrete states,
such as ON or OFF.

Display Monitoring – Display monitoring is a mechanism by which a user can select and
view the current value(s) of one or more measurements.

Distributor – A process that routes data through the Kernel and to external interfaces.

DMON – See Display Monitoring.

DTD – Document Type Definition, which is an XML construct that defines a document
structure with a list of XML elements. See http://www.xml101.com/ for more information.

DTDPATH – An environment variable that specifies the location of CCTK DTD files.

Dynamic Displays – Dynamic Displays associate attributes (e.g. color, blink, position, etc.)
with screen objects that can, in turn, be associated with dynamic values (e.g. measurement
values).

EIA – Electronic Industries Alliance.

End Item – Application device or system under the control of CCTK. The end item is a
source of raw measurement data, recipient of commands, and generator of command
responses.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 171

EOF – End of file.

Exception Condition – A condition created when a measurement satisfies an event against
boundary values, expected values, and masks.

Exception Event – The transition between states (positive and negative) that occurs when an
expression is evaluated.

Exception Expression – An algorithm that determines the states associated with
measurement values. An expression may be atomic or compound formulas consisting of
operators and conjunctions.

Exception Monitoring – Generic, system provided application for monitoring exception
conditions. Exception monitoring presents exception messages to the user upon detection of
exception conditions detailing the conditions of the exception.

Exception Notice – An asynchronous notification of an event provided to an application.

Exception State – Persistent representation of the last exception event associated with a
single measurement.

FD – See Function Designator.

Fieldbus – An open standard for industrial control I/O buses defined by ANSI/ISA-50.02,
Part 2-1992.

FIFO – First in, first out.

FFI – See Frame Format Identifier.

Frame Format Identifier – An identification number within a PCM frame used to uniquely
identify the contents of a frame.

Front End – Communication interfaces that connect end items to CCTK.

FSP – Frame Sync Pattern.

Function Designator – A unique symbolic name representing related data within CCTK.
Function designators are defined by CCTK users and are usually associated with sensors and
effectors whose value is resolved by a CCTK external interface or system application during
project operations. The FD is the principal handle for data and command access within
CCTK. FD’s are also associated with CCTK information such as condition notices and
processing chains.

GLG – Genlogic; GLG is the graphic builder and display creation tool from Genlogic Corp.

GMT – Greenwich Mean Time.

GPS – Global Positioning System.

Graphical User Interface – The interface through which clients access system functionality.
This interface includes software elements (i.e. displays, controls) as well as hardware
elements (i.e. workstations, input devices). Graphical and textual screen formats used to
display data and accept client input.

GUI – See Graphical User Interface.

HCI – Human-computer interface; see Graphical User Interface.

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 172

Health and Status Data – Information about CCTK kernel processes that indicate of the state
of the system.

HTTP – Hypertext transfer protocol.

Human-Computer Interface – See Graphical User Interface.

IBS – Interbus; IBS is a SCADA bus protocol from Phoenix Contact Corp.

Interlock Processing – The processing of a set of conditions upon which command issuance
is contingent. Also referred to as “Prerequisite Control Logic.”

IP – Internet protocol.

IPC – Inter-process Communication. See UNIX system call documentation.

IRIX – The UNIX-based operating system produced by Silicon Graphics.

ISA – Instrumentation, Systems and Automation Society. See http://www.isa.org/.

Kernel – The core real-time services of CCTK. The kernel provides services to applications
and end item interfaces for data processing, data and command distribution, and time
management.

Kernel Programming Interface – An application programming interface consisting of
functions provided directly by the CCTK kernel.

KMSG – Directory containing message queue information.

KPATH – An environment variable that points to the current project directory. KPATH is
used by every CCTK process to locate the resources associated with a particular project.
KPATH typically needs to be set if the user is going to be performing operations from the
UNIX command line.

KPI – See Kernel programming interface.

KSHM – An environment variable that indicates the directory containing information on the
shared memory segments created for a CCTK project. The name of the each file in the KSHM
directory equates to the name of the shared memory segment. The contents of the file contains
the shared memory key associated with the segment. Using this key, it is possible to associate
the shared memory segments listed by the UNIX ipcs command with those used by a CCTK
project.

LDT – See Link Descriptor Table.

Link Descriptor Table – An internal CCTK table that contains information associated with
external commands and link records which link a measurement with an external interface.

Linked Data – A single raw measurement sample that has been acquired, time stamped, and
associated with its FD handle, but not yet processed.

LSB – Least significant bit.

MDI – Multiple document interface.

Measurement – A measurement is a unit of information that is received from an end item or
application. The characteristics of a measurement are defined in the CCTK configuration
database. Measurements can be represented by an analog, discrete, integer, or byte array
value.

http://www.isa.org/

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 173

Minor Frame – A minor frame is a constant sized sequence of data including a
synchronization pattern for hardware identification and optionally a frame ID for software
identification to uniquely identify the frame. A major frame consists of one or more minor
frames.

MSB – Most significant bit.

NACK – Negative acknowledge.

NDT – Notice Descriptor Table.

NRZ – Non-return to zero.

NTP – Network Time Protocol.

Operator – A person concerned with the operation and/or administration of a control system
associated with CCTK; often used interchangeably with “user.”

Packet – Any set of data associated with a packet header allowing it to be communicated
through the Kernel. A packet may be the transport structure for a processed data
measurement, a message, a command, a configuration descriptor, or any other type of data
that circulates through the system.

PAM – Permanent Archive Media.

PCI – Personal Computer Interface. The electronic interface between Intel-class processors
and peripherals.

PCM – Pulse code modulation.

PCM Data Acquisition Application (DAC) – The CCTK software program that processes
PCM telemetry data.

PCMPATH – An environment variable that indicates the location of the PCM Telemetry
Interface software. The PCMPATH environment variable is used by the installation script and
the user environment scripts.

PDI – Payload data interleaver (a data format associated with the Space Shuttle).

Permanent Archive Media – Long-term storage for recorded data. Each PAM has a type of
media and a volume. A volume is a single instance of a type of media. It may also be referred
to as historical archive media. The media may be any standard storage device format, e.g.,
DAT or CD.

Point-to-Point Channel – A channel that is directly connected to two processes without the
need for a distributor for routing the data.

POSIX – Portable operating standard for Unix. See POSIX.4 Programming for the Real
World, O’Reilly & Associates, Sebastopol, CA, 1995.

Pseudo Function Designator – A special type of Function Designator that can be used for
storage of data and to aid in communication. Typically used to designate derived data.

Qt – A Trolltech product that supports portable user interface applications; see
http://doc.trolltech.com/.

Raw Frame – A block of data that is acquired from the end item.

Raw Measurements – Data that has not been linearized or scaled (counts).

http://doc.trolltech.com/

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 174

Real-Time Control Server – The computer that hosts the CCTK server software.

Recorded Data – All measurement, command, event, message and other data that are
recorded on temporary and permanent archive media for retrieval and Analysis. This includes
End item Data and Configuration data.

RT – Real time.

RTCS – See Real-time control server.

RTTM – Real-time table manager.

SCADA – Supervisory control and data acquisition.

SFID – See Sub-frame identification.

SGI – Silicon Graphics, Inc.

SID – See Software Identifier.

SIGCHANSIGNAL – The CCTK signal used to indicate a packet has been placed on a
channel when operating a channel asynchronously.

SIGCHANWAKEUP – An internal channel notification signal.

Simulated Universal Time – A simulated clock used by the CCTK simulation function.

Software Identifier (SID) – Internal CCTK index key for access to command measurement
information. The SID is generated at configuration build time. There is one unique SID for
every Function Designator (FD).

SQL – Standard Query Language.

Stale Data – Data that has not changed in value for a minimum of a user specified number of
data samples.

STDARCH – The standard CCTK channel for information archival. All data sent to the
STDARCH channel will be archived by the ARS.

STDDIST – Legacy CCTK channel that is no longer used.

STDMSG – The standard CCTK channel for system messages. All messages sent to the
STDMSG channel will be processed and forwarded to interested processes, the system
message file, and the archive subsystem.

STDRESP – Standard CCTK channel for command responses.

STDSTATUS – The standard CCTK channel for status information.

Sub-frame identification – A cyclic sequence number contained within a telemetry minor
frame used by the decommutator hardware and/or software to verify major frame lock.

Super packet – A packet which contains multiple subpackets. Superpackets are used to
increase efficiency by reducing overhead when transmitting data.

SUTC – See Simulated Universal Time.

System Message – An asynchronous event that notifies the user some action has occurred.
System messages have a set of static attributes defined in the configuration database and a set
of dynamic attributes generated at instantiation.

TAM – See Temporary archive media.

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 175

Temporary Archive – An archive that stores data in the local file system before being
written to permanent archive.

Temporary Archive Media – Archive media represented by a standard UNIX file where data
is stored before being written to permanent media.

TCL – Tool Command Language, a freely available platform-independent, string-based,
interpreted command language. See http://www.neosoft.com/tcl and
http://hegel.ittc.ukans.edu/topics/tcltk/index.html for more information.

Telemetry Data Stream – A continuous serial bit stream of time division multiplexed data.

TIX – Tk interface extension. Tix is an open open source extended widget set for Tcl/Tk. See
http://tix.mne.com/ and http://tix.sourceforge.net/ more information.

UTC – Universal Time, Coordinated. See http://www.time.gov/timezone.cgi?UTC/s/0/java.

Valid – Raw and processed data values lie within a defined, valid range.

X Protocol – X Window System technology provides display and management of graphical
information for UNIX-based computers. The underlying protocol is defined by X.org; see
http://www.x.org.

XCDB – XML Configuration Database – See Configuration Database.

XIO – Extended input/out.

XML – Extensible Markup Language; a self-describing markup language defined by the
World Wide Web Consortium designed to describe data. XML is an open technology; see
http://www.w3.org/XML/.

http://www.neosoft.com/tcl
http://hegel.ittc.ukans.edu/topics/tcltk/index.html
http://tix.mne.com/
http://tix.sourceforge.net/
http://www.time.gov/timezone.cgi?UTC/s/0/java
http://www.x.org/
http://www.w3.org/XML/

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 176

INDEX

A

a0 coefficient ... 43
a1 coefficient ... 43
analog25, 29, 31, 32, 33, 40, 41, 42, 43, 61, 85, 94, 112,

132
exception... 40
measurement... 33

AnalogException....................................... 29, 32, 39, 40
AnalogMeasurement11, 29, 32, 33, 39, 40, 49, 50, 58,

61, 62
application

external ... 20
starting .. 83
SystemState .. 86, 161

archive11, 12, 23, 24, 51, 52, 64, 75, 76, 90, 117, 162
management.. 6
subsystem ... 23

archive interface .. 51, 52
archive subsystem.................... 23, 24, 47, 51, 64, 65, 90
ars_config.d ... 23, 64
ArsMon .. 90, 91, 118
asynchronous events.. 39

B

bandwidth.. 11
batch

retrieval... 92, 143
bdt.. 27, 76
bitLength ... 49, 50
boot.. 86, 130
Bus Descriptor Table... 27
bus.list ... 85
byte array

measurement... 29, 37, 38, 61
Byte Array... 30, 37, 85
bytearray.list .. 85
ByteArrayException.. 29, 37, 38
ByteArrayMeasurement 29, 37, 38, 39, 61

C

Cautionary ... 40, 46, 47
cct_env.csh .. 8

cct_env.sh.. 8
CCT_HOME ... 9
CCTK simulator...97, 100, 166
CctkClient9, 10, 12, 13, 18, 19, 20, 21, 22, 78, 83, 86,

87, 124
Resources ... 18

CCTKPROJECTLABEL .. 9
CCTKsh......................... See Utility Applications, cctksh
cdt...................................27, 76, 104, 105, 110, 111, 112
chain... See processing chain
channel

rates ...87, 88
channel statistics ... 87
ChannelReader64, 65, 126, 127, 128, 129
channels

creating... 15
ChildGroup ... 60
ClearSystemStateOnBoot86, 130, 155
coefficient ...33, 42, 43
command

issue.. 93
predefined... 48

Command Descriptor Table27, 121
command.list ... 85
commandresponse.list ... 85
commands

simulated ...48, 65, 66, 99
compression24, 46, 47, 131, 135
config_file ..80, 82, 162
ConfigDb..15, 75
configuration database .. 75

defined.. 24
example ...63, 76

configuration file
archive ...23, 75
database .. 25
project........................... See project configuration file
XML naming conventions...................................... 11

ConfigurationDatabase25, 27, 33, 35, 36, 37, 38, 40,
41, 42, 44, 46, 48, 50, 52, 55, 59, 60, 61, 63, 76

conjunction.. 39
conversion25, 29, 33, 37, 38, 41, 42, 43, 44, 100, 131,

132

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 177

integer ... 41
countdown ... 111
countdown time 52, 69, 93, 104
Critical ... 40, 46, 47
criticality ... 46, 47, 48, 160
csim.. 97, 99, 100, 166
Custom Database Components 62

D

data
block ... 66
raw .. 66

data_compress ... 24
DataProc17, 63, 65, 66, 67, 68, 69, 70, 74, 75, 76, 82,

88, 99, 119, 128, 129, 131, 132, 133, 150, 151
configuration... 67

decommutation .. 29, 150
default

table values ... 27
derived.sim .. 112
Descriptor

defined .. 28
descriptor.list ... 85
DescriptorGroup ... 61, 62
directories

KMSG... 84
KSHM... 84
lists.. 84
log ... 84
PROC.. 84
temporary.. 84

discrete
measurement ... 29, 34, 35, 61
measurements ... 34

discrete.list... 85
DiscreteException...................................... 29, 34, 35, 39
DiscreteHighState ... 34, 35, 61
DiscreteLowState... 34, 35, 61
DiscreteMeasurement .. 29, 34, 35, 39, 49, 50, 58, 61, 62
DISPLAY ... 84
display tree 18, 19, 20, 21, 22, 23, 83, 124
DisplayTreeExec.. 19, 20, 21, 22
DisplayTreeInterfaces ... 18, 19
DisplayTreeList ... 19, 22
DisplayTreeStateHistory 19, 21
distributeOverChannel .. 47, 48
distributeOverFile ... 47, 48
distributeToChannels .. 30, 47
DOWN .. 80
dsim ... 97, 100, 167
DTDPATH ... 9

E

environment variables 8, 9, 10, 79, 163
Exceed ... 84
exception25, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39,

40, 131, 132, 133
condition ... 39, 133

defining... 39
Exception

attributes ... 40
restrictions .. 40

ExceptionReference............32, 33, 34, 36, 37, 38, 39, 40
exec ... 20, 21, 22, 142
Execute .. 16
external interface......................27, 32, 50, 104, 105, 119

defining... 51

F

fd_refresh .. 24
file locking .. 11
floating point29, 32, 107, 108, 109, 132
FORCED_DOWN... 80

G

GetCmdList ... 93
GetFdInfo .. 93, 94
GetMeasList .. 93
GetMeasValue... 93, 94
GetMsgList.. 93
GLG simulator .. 98
GLG_HOME ... 9
GLG_PALETTES_LOCATION 9
Grace ... 92, 96
Groups

Using .. 60
gsim ..97, 99, 100, 106, 168

H

health
count ... 17, 87
system... 87

Health and Status
system... 87

Historic
Retrieval ... 95

history...19, 21, 80, 82, 86, 161
HistRetrieve..........................96, 113, 114, 135, 143, 157

I

IgniterSafing.tcl... 94
Informational... 46, 47, 48
InitialValue.....................................33, 34, 35, 36, 37, 38
InlineCommandParameterLinkRecord 48, 49
InputCommandParameterLinkRecord 48, 49
installation... 8, 9
integer conversion ... 41, 42, 43
integerconversion .. 29, 44
IntegerConversion ... 41, 46
IPC .. 87
ipcrm ... 83
IRIX .. 9, 10
IssueCmd... 93, 94
IssueValue ... 93

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 178

K

KPATH .. 9

L

LD_LIBRARY_PATH .. 9
ldt 27, 29, 76
Link Descriptor Table ... 27, 150
Link records... 48
log files.. 84, 88, 95
lower.......................11, 32, 33, 36, 43, 88, 106, 107, 132

M

max_sids.. 24
MaximumChange .. 31, 33, 36
mdt17, 27, 29, 33, 36, 37, 38, 40, 50, 52, 65, 66, 68, 69,

70, 74, 75, 76, 131
Measurement Descriptor Table 27. Also See mdt
measurement.list.. 85
measurement_update.tcl .. 94
MeasurementGroup... 61, 62
MeasurementLinkRecord............... 48, 49, 50, 53, 54, 57
Measurements

defined .. 29
message queues ... 86, 163, 164
minimumMicroseconds.. 47, 48
minimumSids ... 11, 26
minimumSize.. 11, 26
Mode

execute.. 16
Modes

defining... 13
Multicast.. 71
MulticastServer 70, 71, 139, 140, 141

N

ndt.. 27, 29, 48, 63, 76
NEXT_AVAIL_CHAN............................... 16, 117, 139
notice

defining... 46
Notice Descriptor Table 27. Also See ndt
notice.list ... 85
NoticeCompression ... 46, 47, 48
NoticeDescriptor 11, 29, 46, 48, 61
NoticeDistribution ... 46, 47, 48
NrtRetrieve91, 92, 96, 113, 114, 135, 142, 143

P

packet decomutation.. 48, 50
PacketDcomDescriptor.. 29, 50
parallel processing... 67
ParentDefaults ... 60
ParentGroup .. 60
PATH... 9
PCM .. 50, 66, 67
pdt.. 27, 76
percentSpareSids ... 26, 27
percentSpareSize ... 26
permissions.. 12, 80

piecewise linear conversion .. 43
PiecewiseLinearConversion.............................29, 43, 44
PiecewiseLinearSegment43, 44
PktDcom.........................50, 63, 66, 67, 68, 69, 150, 151
plotting ...92, 153
polynomial conversion...33, 42
PolynomialCoefficient..33, 42
PolynomialConversion...............................29, 33, 42, 44
Port Descriptor Table27. See pdt
port.list .. 85
PredefinedCommandParameterLinkRecord48, 49
Process

health .. 90
processing chain...42, 43, 44, 45
processing module..........................30, 34, 41, 42, 44, 45
Processing reference ... 30
ProcessingReference ..30, 44
project

cleanup ... 82
configuration file .. 64
creating... 75
label .. 9
managerSee ProjectManager
resources... 75
shutdown .. 95
starting.. 78
stopping .. 81

project configuration ... 75
project description.. 13
project name ... 13
startup resources... 13

project configuration file
basic XML structure... 13
defined.. 12
DTD ... 12
example ...23, 75
permissions... 12
template .. 23

project directory
cleanup ... 95
defined.. 11
file system issues.. 11
KPATH reference... 11
permissions... 12
possible configuration file 12
selected by CctkClient .. 12
use with Project Manager 80

project_config.dtd12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 75

ProjectManager24, 78, 79, 80, 81, 82, 83, 84, 86, 87,
163, 164, 165

R

Range .. 32
raw dump ...50, 150
rawDataSize30, 33, 35, 36, 61, 62
RawMeasurementLinkRecord50, 53, 54, 56, 57
Remote execution.. 84

Command and Control Technologies Corp. CCTK Administrator’s Manual
Page 179

remote file system.. 11
remote login... 83
RetGraceGenPlot .. 92, 152, 153
RetGraceParseFd .. 92, 152, 153
retrieval

batch ... 96
command line.. 91
historical ... 6, 135
syntax.. 113

Retriever .. 91, 92, 96, 154

S

scripting... 92, 156
segment.................................. 43, 86, 117, 118, 159, 172
Server

connecting from a client ... 83
SetFdInfo ... 93, 94
SetMeasValue.. 93
SetSystemState ... 86, 130, 155
shared memory segments............................. 86, 164, 172
shared resources... 82, 83
shutdown 6, 78, 80, 81, 82, 95, 139, 163, 164

forced.. 81
SID .. 28, 150
sids... 24, 26
signed integer

measurement ... 29, 35, 37, 61
SignedIntException ... 29, 36
SignedIntMeasurement.............................. 29, 35, 36, 61
Significant change ... 31
SignificantChange 31, 32, 33, 36
simple.sim.. 112
simple_archive.tcl.. 94
simulation6, 97, 98, 99, 100, 102, 106, 109, 110, 111,

112, 156, 166
application .. 83
CCTK ... 99
commands... 100, 101
countdown-based .. 110, 111
debug .. 97
events .. 111
Examples .. 112
external ... 105
GLG.. 98
language.. 100
Measurement control .. 106
Modules .. 100
overview ... 97
random.. 106
restrictions .. 100
scripts.. 100
Time.. 104

Stale ... 30
StaleProcessing 30, 33, 35, 36, 37, 38
startBit ... 49, 50
STARTUP_FAILED ... 80, 164
startWord... 49, 50
state information, system... 86

StatMon ... 87, 89, 90, 159
status table... 14, 79
STDARCH16, 30, 47, 64, 65, 75, 76, 88, 162
STDDIST .. 16, 75, 126
STDMSG16, 63, 64, 75, 76, 88
STDREP.. 16
STDSTATUS.....................................16, 66, 75, 76, 140
StopSim ... 99
string

measurement... 29, 38, 61
String... 30, 38, 40, 85
string.list.. 85
StringException... 29
StringMeasurement ... 29, 38, 61
StripChart.. 8, 19, 71
SuperLoki.. 112
superpacket.............68, 69, 128, 129, 131, 132, 137, 150
System messages.. 47, 63, 160
system notices

standard .. 62
System processes... 63

archive .. 64
commanding ... 65
data processing ... 66
external interfaces... 75
health and status ... 66
messaging ... 63
multicasting data... 70
time control... 69

System State File... 84, 86
system_messages.d .. 84, 160
system_state.xml...................................86, 161, 163, 165
systemcommand.list .. 85

T

Table element .. 26
TableGroup ... 26
tam_auto_start ... 24
tam_path.. 24
tam_size .. 24
TamArs23, 63, 64, 65, 75, 117, 143, 162
Tcl ..6, 91, 92, 96, 100
Tcl scripts.. 92
TCLLIBPATH.. 9
temporary archive.. 24, 117, 162
Time Control ... 51, 52, 69
time control interface51, 52, 55, 59, 70
ToolTip .. 19, 20, 21
training .. 97
T-Zero.. 8, 19

U

Units .. 32
unsigned integer

measurement... 29, 35, 37, 61
unsignedint.list .. 85
UnsignedIntException..................................... 29, 36, 39
UnsignedIntMeasurement29, 35, 36, 39, 61

CCTK Administrator’s Manual Command and Control Technologies Corp.
Page 180

upper32, 33, 36, 43, 89, 106, 107, 108, 132
user environment ... 5, 8, 9, 10
user_notes.. 80, 82, 165
utility applications

archive monitoring.. 90
batch retrieval ... 92
cctksh.. 92
channel monitoring ... 87
command line retrieval ... 91
process status .. 89

V

verbose output ... 81, 82

W

waitFor11, 17, 18, 64, 65, 66, 68, 69, 70, 74, 75

WhatsThis...19, 20, 21
widget

control .. 20

X

X Windows ... 8, 84
X Windows System... 8
xcdb_config.dtd25, 27, 33, 35, 36, 37, 38, 40, 41, 42, 44,

46, 48, 50, 52, 55, 59, 60, 61, 63, 76
XML

attribute .. 11
elements11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26,

27, 28, 30, 31, 32, 33, 34, 35, 36, 37, 38, 42, 43,
44, 46, 49, 50, 53, 54, 56, 57, 58, 60, 61, 62, 161

naming convention ... 11

	Introduction
	The Command and Control Toolkit™ product is a data acquisition and commanding software package that can be tailored to a wide range of command and control applications. The product, also known as CCTK, provides a customizable client/server environment de
	CCTK Documentation Guide
	CCT Help Desk

	User Environment
	Automated Configuration
	Manual Configuration

	Project Configuration
	Project Directory
	Project Configuration File
	Basic Structure
	Specifying Startup Resources
	Defining Modes
	Creating the Status Table
	Configuration Database References
	Creating Channels
	Executing Processes

	Specifying CctkClient Resources
	Creating an Interface List in the Display Tree
	Launching External Applications from the Display Tree
	Adding State History to the Display Tree
	Creating Lists in the Display Tree

	Standard Project Configuration File Template

	Archive Configuration File
	Configuration Database
	Basic Structure
	Defining Tables
	Descriptors
	Measurements
	Common Measurement Properties
	Defining Analog Measurements
	Defining Discrete Measurements
	Defining Signed/Unsigned Integer Measurements
	Defining Byte Array Measurements
	Defining String Measurements

	Defining Exceptions
	Defining Processing Modules
	Defining Integer Conversion Processing Module
	Defining Polynomial Conversion Processing Module
	Defining Piecewise Linear Conversion Processing Module
	Defining Processing Chain Processing Module
	Defining User Defined Conversion Processing Module

	Defining Notices
	Defining Link Records
	Defining Packet Decommutation Records
	Defining Interfaces
	Defining an ARS Interface
	Defining a Time Control Interface
	Defining a Peer Sender Interface
	Defining a Peer Receiver Interface

	Using Groups
	Custom Database Components
	Standard System Notices
	Example Configuration Database

	Configuration of System Tasks
	Messaging
	Archive
	Commanding
	Health and Status
	Data Processing
	Time Control
	Multicasting Data
	Peer-to-Peer Interface
	PeerSender
	PeerReceiver
	Sample Peer to Peer Configurations

	External Interfaces

	Creating a CCTK Project

	Project Execution
	Starting and Stopping a Project
	Using ProjectManager to Start a Project
	Using ProjectManager to Stop a Project
	Cleaning Up Project Resources

	Starting and Stopping Applications
	Connecting to the Server From a Client
	Project Directory
	Log Directory
	Temporary Directory
	Lists Directory
	PROC/KSHM/KMSG Directories
	System State File

	Health and Status
	Utility Applications
	Channel Monitoring
	Process Status Monitoring
	Archive Monitoring
	Command Line Retrievals
	Batch Retrievals
	Grace Scripts
	CCTKsh

	Post Project Execution
	Post Project Administration
	Historic Retrievals

	Simulation
	Running the Debug Simulator
	Running The GLG Simulator
	CCTK Simulation
	Simulation Engine and Tcl
	Simulation Language
	Key Simulation Modules
	Update Cycle
	Core Simulator Commands
	New Simulation Command Definition
	Update Simulation Command Definition
	Query Simulation Command Definition
	Delete Simulation Command Definition
	Issue Simulation Command Definition
	Time Simulation Command Definition

	Core Simulator Modules
	External Interface Modules
	Simulation Measurement Modules
	Simulation Command Modules
	Event Modules

	Simulation Examples

	Retrieval Parameter File
	File Syntax
	Command Descriptions
	Example

	Process Manual Pages
	Glossary
	Index

